L(s) = 1 | + (127. + 73.4i)3-s + (−834. + 482. i)5-s + (7.49e3 + 1.29e4i)9-s + (−5.92e3 + 1.02e4i)11-s + 2.88e4i·13-s − 1.41e5·15-s + (3.98e4 + 2.30e4i)17-s + (−1.68e4 + 9.74e3i)19-s + (6.58e4 + 1.14e5i)23-s + (2.69e5 − 4.66e5i)25-s + 1.23e6i·27-s + 1.22e6·29-s + (−9.41e5 − 5.43e5i)31-s + (−1.50e6 + 8.70e5i)33-s + (−1.24e6 − 2.15e6i)37-s + ⋯ |
L(s) = 1 | + (1.56 + 0.906i)3-s + (−1.33 + 0.771i)5-s + (1.14 + 1.97i)9-s + (−0.404 + 0.701i)11-s + 1.01i·13-s − 2.79·15-s + (0.477 + 0.275i)17-s + (−0.129 + 0.0747i)19-s + (0.235 + 0.407i)23-s + (0.689 − 1.19i)25-s + 2.33i·27-s + 1.73·29-s + (−1.01 − 0.588i)31-s + (−1.27 + 0.733i)33-s + (−0.664 − 1.15i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.899512481\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.899512481\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-127. - 73.4i)T + (3.28e3 + 5.68e3i)T^{2} \) |
| 5 | \( 1 + (834. - 482. i)T + (1.95e5 - 3.38e5i)T^{2} \) |
| 11 | \( 1 + (5.92e3 - 1.02e4i)T + (-1.07e8 - 1.85e8i)T^{2} \) |
| 13 | \( 1 - 2.88e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + (-3.98e4 - 2.30e4i)T + (3.48e9 + 6.04e9i)T^{2} \) |
| 19 | \( 1 + (1.68e4 - 9.74e3i)T + (8.49e9 - 1.47e10i)T^{2} \) |
| 23 | \( 1 + (-6.58e4 - 1.14e5i)T + (-3.91e10 + 6.78e10i)T^{2} \) |
| 29 | \( 1 - 1.22e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + (9.41e5 + 5.43e5i)T + (4.26e11 + 7.38e11i)T^{2} \) |
| 37 | \( 1 + (1.24e6 + 2.15e6i)T + (-1.75e12 + 3.04e12i)T^{2} \) |
| 41 | \( 1 + 2.64e4iT - 7.98e12T^{2} \) |
| 43 | \( 1 + 4.08e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + (6.01e6 - 3.47e6i)T + (1.19e13 - 2.06e13i)T^{2} \) |
| 53 | \( 1 + (-4.38e6 + 7.60e6i)T + (-3.11e13 - 5.39e13i)T^{2} \) |
| 59 | \( 1 + (3.24e6 + 1.87e6i)T + (7.34e13 + 1.27e14i)T^{2} \) |
| 61 | \( 1 + (1.21e7 - 7.04e6i)T + (9.58e13 - 1.66e14i)T^{2} \) |
| 67 | \( 1 + (-3.81e6 + 6.60e6i)T + (-2.03e14 - 3.51e14i)T^{2} \) |
| 71 | \( 1 - 1.58e5T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-3.36e7 - 1.94e7i)T + (4.03e14 + 6.98e14i)T^{2} \) |
| 79 | \( 1 + (5.65e6 + 9.78e6i)T + (-7.58e14 + 1.31e15i)T^{2} \) |
| 83 | \( 1 - 5.38e6iT - 2.25e15T^{2} \) |
| 89 | \( 1 + (-9.42e6 + 5.44e6i)T + (1.96e15 - 3.40e15i)T^{2} \) |
| 97 | \( 1 - 5.55e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39279150586945522006645919693, −10.43305938696992851419798706833, −9.587661479309392725317472281553, −8.525902599582850792064688683130, −7.75831385006525724296727212086, −6.94492116219395541183715174486, −4.76320078626914744767846891301, −3.88617552650721471634663761869, −3.15175903308057942562559138071, −2.00187449403573613196155870763,
0.35607688800255573412800756851, 1.28262048495552276208410534551, 2.90894419637170520447694415457, 3.53429140922431557623953180897, 4.94979162446139006160845916391, 6.74078668982039940534310101396, 7.85157248568691278409469360420, 8.249431144474212240161331208317, 8.938403044176295755427446036520, 10.35161519226440353030888705283