L(s) = 1 | + (25.9 + 15.0i)3-s + (−485. + 280. i)5-s + (−2.83e3 − 4.90e3i)9-s + (5.55e3 − 9.62e3i)11-s + 3.86e4i·13-s − 1.68e4·15-s + (9.18e4 + 5.30e4i)17-s + (−1.64e5 + 9.47e4i)19-s + (−2.31e5 − 4.01e5i)23-s + (−3.82e4 + 6.63e4i)25-s − 3.66e5i·27-s − 6.65e4·29-s + (−4.71e5 − 2.72e5i)31-s + (2.88e5 − 1.66e5i)33-s + (4.59e5 + 7.96e5i)37-s + ⋯ |
L(s) = 1 | + (0.320 + 0.185i)3-s + (−0.776 + 0.448i)5-s + (−0.431 − 0.747i)9-s + (0.379 − 0.657i)11-s + 1.35i·13-s − 0.332·15-s + (1.09 + 0.635i)17-s + (−1.25 + 0.727i)19-s + (−0.828 − 1.43i)23-s + (−0.0980 + 0.169i)25-s − 0.690i·27-s − 0.0941·29-s + (−0.510 − 0.294i)31-s + (0.243 − 0.140i)33-s + (0.245 + 0.425i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.494110332\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.494110332\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-25.9 - 15.0i)T + (3.28e3 + 5.68e3i)T^{2} \) |
| 5 | \( 1 + (485. - 280. i)T + (1.95e5 - 3.38e5i)T^{2} \) |
| 11 | \( 1 + (-5.55e3 + 9.62e3i)T + (-1.07e8 - 1.85e8i)T^{2} \) |
| 13 | \( 1 - 3.86e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + (-9.18e4 - 5.30e4i)T + (3.48e9 + 6.04e9i)T^{2} \) |
| 19 | \( 1 + (1.64e5 - 9.47e4i)T + (8.49e9 - 1.47e10i)T^{2} \) |
| 23 | \( 1 + (2.31e5 + 4.01e5i)T + (-3.91e10 + 6.78e10i)T^{2} \) |
| 29 | \( 1 + 6.65e4T + 5.00e11T^{2} \) |
| 31 | \( 1 + (4.71e5 + 2.72e5i)T + (4.26e11 + 7.38e11i)T^{2} \) |
| 37 | \( 1 + (-4.59e5 - 7.96e5i)T + (-1.75e12 + 3.04e12i)T^{2} \) |
| 41 | \( 1 + 2.89e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 3.05e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + (-9.60e4 + 5.54e4i)T + (1.19e13 - 2.06e13i)T^{2} \) |
| 53 | \( 1 + (-6.87e6 + 1.19e7i)T + (-3.11e13 - 5.39e13i)T^{2} \) |
| 59 | \( 1 + (5.62e5 + 3.24e5i)T + (7.34e13 + 1.27e14i)T^{2} \) |
| 61 | \( 1 + (-7.64e6 + 4.41e6i)T + (9.58e13 - 1.66e14i)T^{2} \) |
| 67 | \( 1 + (-2.44e6 + 4.24e6i)T + (-2.03e14 - 3.51e14i)T^{2} \) |
| 71 | \( 1 - 1.20e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-2.76e7 - 1.59e7i)T + (4.03e14 + 6.98e14i)T^{2} \) |
| 79 | \( 1 + (-3.40e7 - 5.89e7i)T + (-7.58e14 + 1.31e15i)T^{2} \) |
| 83 | \( 1 + 4.61e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + (9.23e6 - 5.33e6i)T + (1.96e15 - 3.40e15i)T^{2} \) |
| 97 | \( 1 + 4.77e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02756147698005778321397692988, −9.935860485980403942336006863354, −8.791294325945196943953746402616, −8.105119387137996940851786867494, −6.76179820705274412260592268659, −5.93737812280839594502699261823, −4.07457843202608207510534808115, −3.60364692894497165963620878728, −2.09407887617127719659416931978, −0.44789693650413028288992961490,
0.805694839277697863477851984168, 2.27808995641941017519336030669, 3.52526898106326438089059073375, 4.75124812868999115007259734033, 5.80257271079907861971044087903, 7.47193529748851650971732251219, 7.920789784426680109855599691801, 8.985486831254476857776362827088, 10.14083799303887285888635573405, 11.18480563801457132235555651293