L(s) = 1 | + (−1.25 − 0.653i)2-s + (−0.635 − 0.797i)3-s + (1.14 + 1.63i)4-s + (−0.726 + 0.579i)5-s + (0.276 + 1.41i)6-s + (−2.60 + 0.472i)7-s + (−0.365 − 2.80i)8-s + (0.436 − 1.91i)9-s + (1.28 − 0.251i)10-s + (−5.04 + 1.15i)11-s + (0.578 − 1.95i)12-s + (−2.71 + 0.618i)13-s + (3.57 + 1.10i)14-s + (0.923 + 0.210i)15-s + (−1.37 + 3.75i)16-s + (−2.67 + 5.55i)17-s + ⋯ |
L(s) = 1 | + (−0.886 − 0.462i)2-s + (−0.367 − 0.460i)3-s + (0.572 + 0.819i)4-s + (−0.324 + 0.259i)5-s + (0.112 + 0.577i)6-s + (−0.983 + 0.178i)7-s + (−0.129 − 0.991i)8-s + (0.145 − 0.637i)9-s + (0.407 − 0.0796i)10-s + (−1.52 + 0.347i)11-s + (0.166 − 0.564i)12-s + (−0.751 + 0.171i)13-s + (0.955 + 0.296i)14-s + (0.238 + 0.0544i)15-s + (−0.343 + 0.939i)16-s + (−0.648 + 1.34i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00178133 + 0.00543040i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00178133 + 0.00543040i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.25 + 0.653i)T \) |
| 7 | \( 1 + (2.60 - 0.472i)T \) |
good | 3 | \( 1 + (0.635 + 0.797i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (0.726 - 0.579i)T + (1.11 - 4.87i)T^{2} \) |
| 11 | \( 1 + (5.04 - 1.15i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (2.71 - 0.618i)T + (11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + (2.67 - 5.55i)T + (-10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 - 5.31T + 19T^{2} \) |
| 23 | \( 1 + (2.67 + 5.54i)T + (-14.3 + 17.9i)T^{2} \) |
| 29 | \( 1 + (6.99 + 3.37i)T + (18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 - 2.80T + 31T^{2} \) |
| 37 | \( 1 + (5.03 + 2.42i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (-8.64 + 6.89i)T + (9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (-1.76 - 1.40i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (1.31 + 5.75i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-3.53 + 1.70i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (3.63 - 4.55i)T + (-13.1 - 57.5i)T^{2} \) |
| 61 | \( 1 + (2.83 - 5.89i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + 7.05iT - 67T^{2} \) |
| 71 | \( 1 + (0.607 + 1.26i)T + (-44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (4.23 + 0.966i)T + (65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 - 1.47iT - 79T^{2} \) |
| 83 | \( 1 + (2.36 - 10.3i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-8.05 - 1.83i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + 11.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99202616810860235223781476753, −10.80353041406960920839485840292, −10.00016211437389784676564425758, −9.084428460002264563367327170920, −7.72867592656735619927526186785, −7.02876643218892538618495577477, −5.86244877506908496735719288944, −3.76886022862283911711103673017, −2.37488739158837668192039402678, −0.00634243796433922256916029322,
2.76497001027624577661157140201, 4.89781351480617154403715533954, 5.72802561074281026782542938933, 7.30789745538639549822357913332, 7.84674337712099212610441053750, 9.365081809400240811153777099175, 9.968338351648493896071417921879, 10.87671885031570155697094803908, 11.79919690987313018883990690366, 13.16718862020376574403056120678