L(s) = 1 | + (−1.25 − 0.653i)2-s + (−0.635 − 0.797i)3-s + (1.14 + 1.63i)4-s + (−0.726 + 0.579i)5-s + (0.276 + 1.41i)6-s + (−2.60 + 0.472i)7-s + (−0.365 − 2.80i)8-s + (0.436 − 1.91i)9-s + (1.28 − 0.251i)10-s + (−5.04 + 1.15i)11-s + (0.578 − 1.95i)12-s + (−2.71 + 0.618i)13-s + (3.57 + 1.10i)14-s + (0.923 + 0.210i)15-s + (−1.37 + 3.75i)16-s + (−2.67 + 5.55i)17-s + ⋯ |
L(s) = 1 | + (−0.886 − 0.462i)2-s + (−0.367 − 0.460i)3-s + (0.572 + 0.819i)4-s + (−0.324 + 0.259i)5-s + (0.112 + 0.577i)6-s + (−0.983 + 0.178i)7-s + (−0.129 − 0.991i)8-s + (0.145 − 0.637i)9-s + (0.407 − 0.0796i)10-s + (−1.52 + 0.347i)11-s + (0.166 − 0.564i)12-s + (−0.751 + 0.171i)13-s + (0.955 + 0.296i)14-s + (0.238 + 0.0544i)15-s + (−0.343 + 0.939i)16-s + (−0.648 + 1.34i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.805−0.592i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.805−0.592i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.805−0.592i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.805−0.592i)
|
Particular Values
L(1) |
≈ |
0.00178133+0.00543040i |
L(21) |
≈ |
0.00178133+0.00543040i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.25+0.653i)T |
| 7 | 1+(2.60−0.472i)T |
good | 3 | 1+(0.635+0.797i)T+(−0.667+2.92i)T2 |
| 5 | 1+(0.726−0.579i)T+(1.11−4.87i)T2 |
| 11 | 1+(5.04−1.15i)T+(9.91−4.77i)T2 |
| 13 | 1+(2.71−0.618i)T+(11.7−5.64i)T2 |
| 17 | 1+(2.67−5.55i)T+(−10.5−13.2i)T2 |
| 19 | 1−5.31T+19T2 |
| 23 | 1+(2.67+5.54i)T+(−14.3+17.9i)T2 |
| 29 | 1+(6.99+3.37i)T+(18.0+22.6i)T2 |
| 31 | 1−2.80T+31T2 |
| 37 | 1+(5.03+2.42i)T+(23.0+28.9i)T2 |
| 41 | 1+(−8.64+6.89i)T+(9.12−39.9i)T2 |
| 43 | 1+(−1.76−1.40i)T+(9.56+41.9i)T2 |
| 47 | 1+(1.31+5.75i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−3.53+1.70i)T+(33.0−41.4i)T2 |
| 59 | 1+(3.63−4.55i)T+(−13.1−57.5i)T2 |
| 61 | 1+(2.83−5.89i)T+(−38.0−47.6i)T2 |
| 67 | 1+7.05iT−67T2 |
| 71 | 1+(0.607+1.26i)T+(−44.2+55.5i)T2 |
| 73 | 1+(4.23+0.966i)T+(65.7+31.6i)T2 |
| 79 | 1−1.47iT−79T2 |
| 83 | 1+(2.36−10.3i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−8.05−1.83i)T+(80.1+38.6i)T2 |
| 97 | 1+11.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99202616810860235223781476753, −10.80353041406960920839485840292, −10.00016211437389784676564425758, −9.084428460002264563367327170920, −7.72867592656735619927526186785, −7.02876643218892538618495577477, −5.86244877506908496735719288944, −3.76886022862283911711103673017, −2.37488739158837668192039402678, −0.00634243796433922256916029322,
2.76497001027624577661157140201, 4.89781351480617154403715533954, 5.72802561074281026782542938933, 7.30789745538639549822357913332, 7.84674337712099212610441053750, 9.365081809400240811153777099175, 9.968338351648493896071417921879, 10.87671885031570155697094803908, 11.79919690987313018883990690366, 13.16718862020376574403056120678