L(s) = 1 | + (1.04 − 0.957i)2-s + (1.57 + 1.96i)3-s + (0.168 − 1.99i)4-s + (1.55 − 1.23i)5-s + (3.52 + 0.547i)6-s + (−2.03 + 1.69i)7-s + (−1.73 − 2.23i)8-s + (−0.745 + 3.26i)9-s + (0.432 − 2.77i)10-s + (−3.09 + 0.707i)11-s + (4.18 − 2.79i)12-s + (−5.38 + 1.22i)13-s + (−0.498 + 3.70i)14-s + (4.88 + 1.11i)15-s + (−3.94 − 0.670i)16-s + (2.48 − 5.15i)17-s + ⋯ |
L(s) = 1 | + (0.736 − 0.676i)2-s + (0.906 + 1.13i)3-s + (0.0840 − 0.996i)4-s + (0.695 − 0.554i)5-s + (1.43 + 0.223i)6-s + (−0.768 + 0.639i)7-s + (−0.612 − 0.790i)8-s + (−0.248 + 1.08i)9-s + (0.136 − 0.878i)10-s + (−0.934 + 0.213i)11-s + (1.20 − 0.808i)12-s + (−1.49 + 0.340i)13-s + (−0.133 + 0.991i)14-s + (1.26 + 0.287i)15-s + (−0.985 − 0.167i)16-s + (0.601 − 1.24i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.955+0.295i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.955+0.295i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.955+0.295i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.955+0.295i)
|
Particular Values
L(1) |
≈ |
2.08034−0.313948i |
L(21) |
≈ |
2.08034−0.313948i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.04+0.957i)T |
| 7 | 1+(2.03−1.69i)T |
good | 3 | 1+(−1.57−1.96i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−1.55+1.23i)T+(1.11−4.87i)T2 |
| 11 | 1+(3.09−0.707i)T+(9.91−4.77i)T2 |
| 13 | 1+(5.38−1.22i)T+(11.7−5.64i)T2 |
| 17 | 1+(−2.48+5.15i)T+(−10.5−13.2i)T2 |
| 19 | 1−7.59T+19T2 |
| 23 | 1+(−0.751−1.55i)T+(−14.3+17.9i)T2 |
| 29 | 1+(−0.626−0.301i)T+(18.0+22.6i)T2 |
| 31 | 1+8.05T+31T2 |
| 37 | 1+(−4.24−2.04i)T+(23.0+28.9i)T2 |
| 41 | 1+(0.0970−0.0773i)T+(9.12−39.9i)T2 |
| 43 | 1+(3.53+2.81i)T+(9.56+41.9i)T2 |
| 47 | 1+(−0.299−1.31i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−0.183+0.0884i)T+(33.0−41.4i)T2 |
| 59 | 1+(−1.40+1.76i)T+(−13.1−57.5i)T2 |
| 61 | 1+(−0.524+1.08i)T+(−38.0−47.6i)T2 |
| 67 | 1−3.71iT−67T2 |
| 71 | 1+(−3.42−7.11i)T+(−44.2+55.5i)T2 |
| 73 | 1+(−4.61−1.05i)T+(65.7+31.6i)T2 |
| 79 | 1+9.99iT−79T2 |
| 83 | 1+(0.712−3.12i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−14.8−3.38i)T+(80.1+38.6i)T2 |
| 97 | 1+3.30iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.55440896627499980084445453130, −11.61938895117308715832859662879, −10.07777061883088520295446107280, −9.603468683642423225285906882156, −9.196425649424016647575140029358, −7.33898344789991881400230652559, −5.39030496015750653749336225199, −5.00068880229603840637837373321, −3.32786904440539284213164332162, −2.47853955719616050727838115526,
2.46337090368210571077251427719, 3.36711194796252915514281565424, 5.36499230183182803013202877550, 6.50298114340818633096466249985, 7.46100841187498582417516901444, 7.899389600321459782877685197492, 9.439752795377984949325272864340, 10.49881660107492147250323224062, 12.20314931366054305651439906705, 12.92287510094218929709998181684