Properties

Label 2-14e2-196.111-c1-0-18
Degree 22
Conductor 196196
Sign 0.576+0.817i0.576 + 0.817i
Analytic cond. 1.565061.56506
Root an. cond. 1.251021.25102
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.846 − 1.13i)2-s + (0.635 + 0.797i)3-s + (−0.567 − 1.91i)4-s + (−0.726 + 0.579i)5-s + (1.44 − 0.0455i)6-s + (2.60 − 0.472i)7-s + (−2.65 − 0.980i)8-s + (0.436 − 1.91i)9-s + (0.0415 + 1.31i)10-s + (5.04 − 1.15i)11-s + (1.16 − 1.67i)12-s + (−2.71 + 0.618i)13-s + (1.66 − 3.34i)14-s + (−0.923 − 0.210i)15-s + (−3.35 + 2.17i)16-s + (−2.67 + 5.55i)17-s + ⋯
L(s)  = 1  + (0.598 − 0.801i)2-s + (0.367 + 0.460i)3-s + (−0.283 − 0.958i)4-s + (−0.324 + 0.259i)5-s + (0.588 − 0.0185i)6-s + (0.983 − 0.178i)7-s + (−0.937 − 0.346i)8-s + (0.145 − 0.637i)9-s + (0.0131 + 0.415i)10-s + (1.52 − 0.347i)11-s + (0.337 − 0.482i)12-s + (−0.751 + 0.171i)13-s + (0.445 − 0.895i)14-s + (−0.238 − 0.0544i)15-s + (−0.839 + 0.544i)16-s + (−0.648 + 1.34i)17-s + ⋯

Functional equation

Λ(s)=(196s/2ΓC(s)L(s)=((0.576+0.817i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.576 + 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(196s/2ΓC(s+1/2)L(s)=((0.576+0.817i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.576 + 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 196196    =    22722^{2} \cdot 7^{2}
Sign: 0.576+0.817i0.576 + 0.817i
Analytic conductor: 1.565061.56506
Root analytic conductor: 1.251021.25102
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ196(111,)\chi_{196} (111, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 196, ( :1/2), 0.576+0.817i)(2,\ 196,\ (\ :1/2),\ 0.576 + 0.817i)

Particular Values

L(1)L(1) \approx 1.542320.799358i1.54232 - 0.799358i
L(12)L(\frac12) \approx 1.542320.799358i1.54232 - 0.799358i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.846+1.13i)T 1 + (-0.846 + 1.13i)T
7 1+(2.60+0.472i)T 1 + (-2.60 + 0.472i)T
good3 1+(0.6350.797i)T+(0.667+2.92i)T2 1 + (-0.635 - 0.797i)T + (-0.667 + 2.92i)T^{2}
5 1+(0.7260.579i)T+(1.114.87i)T2 1 + (0.726 - 0.579i)T + (1.11 - 4.87i)T^{2}
11 1+(5.04+1.15i)T+(9.914.77i)T2 1 + (-5.04 + 1.15i)T + (9.91 - 4.77i)T^{2}
13 1+(2.710.618i)T+(11.75.64i)T2 1 + (2.71 - 0.618i)T + (11.7 - 5.64i)T^{2}
17 1+(2.675.55i)T+(10.513.2i)T2 1 + (2.67 - 5.55i)T + (-10.5 - 13.2i)T^{2}
19 1+5.31T+19T2 1 + 5.31T + 19T^{2}
23 1+(2.675.54i)T+(14.3+17.9i)T2 1 + (-2.67 - 5.54i)T + (-14.3 + 17.9i)T^{2}
29 1+(6.99+3.37i)T+(18.0+22.6i)T2 1 + (6.99 + 3.37i)T + (18.0 + 22.6i)T^{2}
31 1+2.80T+31T2 1 + 2.80T + 31T^{2}
37 1+(5.03+2.42i)T+(23.0+28.9i)T2 1 + (5.03 + 2.42i)T + (23.0 + 28.9i)T^{2}
41 1+(8.64+6.89i)T+(9.1239.9i)T2 1 + (-8.64 + 6.89i)T + (9.12 - 39.9i)T^{2}
43 1+(1.76+1.40i)T+(9.56+41.9i)T2 1 + (1.76 + 1.40i)T + (9.56 + 41.9i)T^{2}
47 1+(1.315.75i)T+(42.3+20.3i)T2 1 + (-1.31 - 5.75i)T + (-42.3 + 20.3i)T^{2}
53 1+(3.53+1.70i)T+(33.041.4i)T2 1 + (-3.53 + 1.70i)T + (33.0 - 41.4i)T^{2}
59 1+(3.63+4.55i)T+(13.157.5i)T2 1 + (-3.63 + 4.55i)T + (-13.1 - 57.5i)T^{2}
61 1+(2.835.89i)T+(38.047.6i)T2 1 + (2.83 - 5.89i)T + (-38.0 - 47.6i)T^{2}
67 17.05iT67T2 1 - 7.05iT - 67T^{2}
71 1+(0.6071.26i)T+(44.2+55.5i)T2 1 + (-0.607 - 1.26i)T + (-44.2 + 55.5i)T^{2}
73 1+(4.23+0.966i)T+(65.7+31.6i)T2 1 + (4.23 + 0.966i)T + (65.7 + 31.6i)T^{2}
79 1+1.47iT79T2 1 + 1.47iT - 79T^{2}
83 1+(2.36+10.3i)T+(74.736.0i)T2 1 + (-2.36 + 10.3i)T + (-74.7 - 36.0i)T^{2}
89 1+(8.051.83i)T+(80.1+38.6i)T2 1 + (-8.05 - 1.83i)T + (80.1 + 38.6i)T^{2}
97 1+11.4iT97T2 1 + 11.4iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.20443655964007949230473200448, −11.35797075459324944568552559663, −10.69519703535455199803634318293, −9.389955223287259114032485734001, −8.768485943450761848970324210022, −7.09357114992357455551968840252, −5.81169388962977913837357046484, −4.20753451333743895641702717382, −3.74902822572673252686977171572, −1.78830585698408429409879593902, 2.31381227817840939686441650973, 4.28702565813818713758929106904, 5.00188081947156964901612339771, 6.65703701427684333005423272850, 7.43215323702893397760030703346, 8.430215747507871039332508850027, 9.176606110548302843275451031845, 11.01415079559243791452776981793, 12.00463185335235171244770109469, 12.71326116579253336890074977013

Graph of the ZZ-function along the critical line