L(s) = 1 | + (0.846 − 1.13i)2-s + (0.635 + 0.797i)3-s + (−0.567 − 1.91i)4-s + (−0.726 + 0.579i)5-s + (1.44 − 0.0455i)6-s + (2.60 − 0.472i)7-s + (−2.65 − 0.980i)8-s + (0.436 − 1.91i)9-s + (0.0415 + 1.31i)10-s + (5.04 − 1.15i)11-s + (1.16 − 1.67i)12-s + (−2.71 + 0.618i)13-s + (1.66 − 3.34i)14-s + (−0.923 − 0.210i)15-s + (−3.35 + 2.17i)16-s + (−2.67 + 5.55i)17-s + ⋯ |
L(s) = 1 | + (0.598 − 0.801i)2-s + (0.367 + 0.460i)3-s + (−0.283 − 0.958i)4-s + (−0.324 + 0.259i)5-s + (0.588 − 0.0185i)6-s + (0.983 − 0.178i)7-s + (−0.937 − 0.346i)8-s + (0.145 − 0.637i)9-s + (0.0131 + 0.415i)10-s + (1.52 − 0.347i)11-s + (0.337 − 0.482i)12-s + (−0.751 + 0.171i)13-s + (0.445 − 0.895i)14-s + (−0.238 − 0.0544i)15-s + (−0.839 + 0.544i)16-s + (−0.648 + 1.34i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.576 + 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.576 + 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.54232 - 0.799358i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54232 - 0.799358i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.846 + 1.13i)T \) |
| 7 | \( 1 + (-2.60 + 0.472i)T \) |
good | 3 | \( 1 + (-0.635 - 0.797i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (0.726 - 0.579i)T + (1.11 - 4.87i)T^{2} \) |
| 11 | \( 1 + (-5.04 + 1.15i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (2.71 - 0.618i)T + (11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + (2.67 - 5.55i)T + (-10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 + 5.31T + 19T^{2} \) |
| 23 | \( 1 + (-2.67 - 5.54i)T + (-14.3 + 17.9i)T^{2} \) |
| 29 | \( 1 + (6.99 + 3.37i)T + (18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 + 2.80T + 31T^{2} \) |
| 37 | \( 1 + (5.03 + 2.42i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (-8.64 + 6.89i)T + (9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (1.76 + 1.40i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-1.31 - 5.75i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-3.53 + 1.70i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (-3.63 + 4.55i)T + (-13.1 - 57.5i)T^{2} \) |
| 61 | \( 1 + (2.83 - 5.89i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 - 7.05iT - 67T^{2} \) |
| 71 | \( 1 + (-0.607 - 1.26i)T + (-44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (4.23 + 0.966i)T + (65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + 1.47iT - 79T^{2} \) |
| 83 | \( 1 + (-2.36 + 10.3i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-8.05 - 1.83i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + 11.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.20443655964007949230473200448, −11.35797075459324944568552559663, −10.69519703535455199803634318293, −9.389955223287259114032485734001, −8.768485943450761848970324210022, −7.09357114992357455551968840252, −5.81169388962977913837357046484, −4.20753451333743895641702717382, −3.74902822572673252686977171572, −1.78830585698408429409879593902,
2.31381227817840939686441650973, 4.28702565813818713758929106904, 5.00188081947156964901612339771, 6.65703701427684333005423272850, 7.43215323702893397760030703346, 8.430215747507871039332508850027, 9.176606110548302843275451031845, 11.01415079559243791452776981793, 12.00463185335235171244770109469, 12.71326116579253336890074977013