Properties

Label 2-14e2-196.111-c1-0-16
Degree 22
Conductor 196196
Sign 0.720+0.693i-0.720 + 0.693i
Analytic cond. 1.565061.56506
Root an. cond. 1.251021.25102
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.35 − 0.410i)2-s + (−1.57 − 1.96i)3-s + (1.66 + 1.11i)4-s + (1.55 − 1.23i)5-s + (1.31 + 3.31i)6-s + (2.03 − 1.69i)7-s + (−1.79 − 2.18i)8-s + (−0.745 + 3.26i)9-s + (−2.61 + 1.03i)10-s + (3.09 − 0.707i)11-s + (−0.423 − 5.02i)12-s + (−5.38 + 1.22i)13-s + (−3.44 + 1.45i)14-s + (−4.88 − 1.11i)15-s + (1.53 + 3.69i)16-s + (2.48 − 5.15i)17-s + ⋯
L(s)  = 1  + (−0.956 − 0.290i)2-s + (−0.906 − 1.13i)3-s + (0.831 + 0.555i)4-s + (0.695 − 0.554i)5-s + (0.537 + 1.35i)6-s + (0.768 − 0.639i)7-s + (−0.634 − 0.772i)8-s + (−0.248 + 1.08i)9-s + (−0.826 + 0.328i)10-s + (0.934 − 0.213i)11-s + (−0.122 − 1.44i)12-s + (−1.49 + 0.340i)13-s + (−0.921 + 0.388i)14-s + (−1.26 − 0.287i)15-s + (0.382 + 0.923i)16-s + (0.601 − 1.24i)17-s + ⋯

Functional equation

Λ(s)=(196s/2ΓC(s)L(s)=((0.720+0.693i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.720 + 0.693i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(196s/2ΓC(s+1/2)L(s)=((0.720+0.693i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.720 + 0.693i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 196196    =    22722^{2} \cdot 7^{2}
Sign: 0.720+0.693i-0.720 + 0.693i
Analytic conductor: 1.565061.56506
Root analytic conductor: 1.251021.25102
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ196(111,)\chi_{196} (111, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 196, ( :1/2), 0.720+0.693i)(2,\ 196,\ (\ :1/2),\ -0.720 + 0.693i)

Particular Values

L(1)L(1) \approx 0.2419720.600233i0.241972 - 0.600233i
L(12)L(\frac12) \approx 0.2419720.600233i0.241972 - 0.600233i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.35+0.410i)T 1 + (1.35 + 0.410i)T
7 1+(2.03+1.69i)T 1 + (-2.03 + 1.69i)T
good3 1+(1.57+1.96i)T+(0.667+2.92i)T2 1 + (1.57 + 1.96i)T + (-0.667 + 2.92i)T^{2}
5 1+(1.55+1.23i)T+(1.114.87i)T2 1 + (-1.55 + 1.23i)T + (1.11 - 4.87i)T^{2}
11 1+(3.09+0.707i)T+(9.914.77i)T2 1 + (-3.09 + 0.707i)T + (9.91 - 4.77i)T^{2}
13 1+(5.381.22i)T+(11.75.64i)T2 1 + (5.38 - 1.22i)T + (11.7 - 5.64i)T^{2}
17 1+(2.48+5.15i)T+(10.513.2i)T2 1 + (-2.48 + 5.15i)T + (-10.5 - 13.2i)T^{2}
19 1+7.59T+19T2 1 + 7.59T + 19T^{2}
23 1+(0.751+1.55i)T+(14.3+17.9i)T2 1 + (0.751 + 1.55i)T + (-14.3 + 17.9i)T^{2}
29 1+(0.6260.301i)T+(18.0+22.6i)T2 1 + (-0.626 - 0.301i)T + (18.0 + 22.6i)T^{2}
31 18.05T+31T2 1 - 8.05T + 31T^{2}
37 1+(4.242.04i)T+(23.0+28.9i)T2 1 + (-4.24 - 2.04i)T + (23.0 + 28.9i)T^{2}
41 1+(0.09700.0773i)T+(9.1239.9i)T2 1 + (0.0970 - 0.0773i)T + (9.12 - 39.9i)T^{2}
43 1+(3.532.81i)T+(9.56+41.9i)T2 1 + (-3.53 - 2.81i)T + (9.56 + 41.9i)T^{2}
47 1+(0.299+1.31i)T+(42.3+20.3i)T2 1 + (0.299 + 1.31i)T + (-42.3 + 20.3i)T^{2}
53 1+(0.183+0.0884i)T+(33.041.4i)T2 1 + (-0.183 + 0.0884i)T + (33.0 - 41.4i)T^{2}
59 1+(1.401.76i)T+(13.157.5i)T2 1 + (1.40 - 1.76i)T + (-13.1 - 57.5i)T^{2}
61 1+(0.524+1.08i)T+(38.047.6i)T2 1 + (-0.524 + 1.08i)T + (-38.0 - 47.6i)T^{2}
67 1+3.71iT67T2 1 + 3.71iT - 67T^{2}
71 1+(3.42+7.11i)T+(44.2+55.5i)T2 1 + (3.42 + 7.11i)T + (-44.2 + 55.5i)T^{2}
73 1+(4.611.05i)T+(65.7+31.6i)T2 1 + (-4.61 - 1.05i)T + (65.7 + 31.6i)T^{2}
79 19.99iT79T2 1 - 9.99iT - 79T^{2}
83 1+(0.712+3.12i)T+(74.736.0i)T2 1 + (-0.712 + 3.12i)T + (-74.7 - 36.0i)T^{2}
89 1+(14.83.38i)T+(80.1+38.6i)T2 1 + (-14.8 - 3.38i)T + (80.1 + 38.6i)T^{2}
97 1+3.30iT97T2 1 + 3.30iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.97585010062639679658597880447, −11.34338368798777330622395574069, −10.17424725409516045080507536133, −9.203481197465715730878133652958, −7.959737762252955192199130765441, −7.04860162187499576956628016672, −6.21964966996212499539649870352, −4.71066106995781362659516513879, −2.12514264263622905200503138540, −0.882813444233620004289886396439, 2.21229052647269112522790722709, 4.51207884083504168146727279472, 5.74015221537554484640701029819, 6.43826795972425448937625474607, 7.978070599038829003988284462049, 9.155360396021029820823082270524, 10.13358827666362227220979468298, 10.50031911030801684264612671662, 11.57773595532288350880826193071, 12.34825800178513904051970835048

Graph of the ZZ-function along the critical line