L(s) = 1 | + (−1.13 − 0.846i)2-s + (1.79 + 2.25i)3-s + (0.566 + 1.91i)4-s + (2.89 − 2.30i)5-s + (−0.127 − 4.07i)6-s + (−1.61 − 2.09i)7-s + (0.982 − 2.65i)8-s + (−1.18 + 5.17i)9-s + (−5.22 + 0.164i)10-s + (1.04 − 0.238i)11-s + (−3.30 + 4.72i)12-s + (1.70 − 0.388i)13-s + (0.0583 + 3.74i)14-s + (10.3 + 2.37i)15-s + (−3.35 + 2.17i)16-s + (−2.15 + 4.47i)17-s + ⋯ |
L(s) = 1 | + (−0.801 − 0.598i)2-s + (1.03 + 1.30i)3-s + (0.283 + 0.959i)4-s + (1.29 − 1.03i)5-s + (−0.0522 − 1.66i)6-s + (−0.611 − 0.791i)7-s + (0.347 − 0.937i)8-s + (−0.393 + 1.72i)9-s + (−1.65 + 0.0519i)10-s + (0.314 − 0.0718i)11-s + (−0.953 + 1.36i)12-s + (0.472 − 0.107i)13-s + (0.0155 + 0.999i)14-s + (2.68 + 0.612i)15-s + (−0.839 + 0.543i)16-s + (−0.522 + 1.08i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.000891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.000891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26505 - 0.000563984i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26505 - 0.000563984i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 + 0.846i)T \) |
| 7 | \( 1 + (1.61 + 2.09i)T \) |
good | 3 | \( 1 + (-1.79 - 2.25i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (-2.89 + 2.30i)T + (1.11 - 4.87i)T^{2} \) |
| 11 | \( 1 + (-1.04 + 0.238i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-1.70 + 0.388i)T + (11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + (2.15 - 4.47i)T + (-10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 + 5.54T + 19T^{2} \) |
| 23 | \( 1 + (-1.41 - 2.93i)T + (-14.3 + 17.9i)T^{2} \) |
| 29 | \( 1 + (3.37 + 1.62i)T + (18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 + 3.97T + 31T^{2} \) |
| 37 | \( 1 + (-0.739 - 0.356i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (-0.928 + 0.740i)T + (9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (0.119 + 0.0951i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-1.04 - 4.58i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (9.27 - 4.46i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (-4.35 + 5.45i)T + (-13.1 - 57.5i)T^{2} \) |
| 61 | \( 1 + (-5.04 + 10.4i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + 6.15iT - 67T^{2} \) |
| 71 | \( 1 + (2.60 + 5.40i)T + (-44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (12.6 + 2.88i)T + (65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + 10.7iT - 79T^{2} \) |
| 83 | \( 1 + (2.65 - 11.6i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (-14.5 - 3.31i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 - 4.59iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84425157384000821077339349703, −10.90827079367995036458550659264, −10.29898613527894119434942439536, −9.375713334429760347249992690121, −9.030317475108074522962995252790, −8.051794342334286903266478232720, −6.25559048209597197431060345043, −4.47455198529290718746763205287, −3.52847065345882393897485417549, −1.89772162623190874095172712851,
1.94652721179471041450947332512, 2.73969694312499794617172353154, 5.82927688263784182177139260274, 6.63365334605281608335065596385, 7.16144675812605530305332986431, 8.664363078139701017471117013203, 9.144677231113018676432330809714, 10.17795088602520798724835935767, 11.40667781835469141118610820852, 12.91520063742106788963729753229