L(s) = 1 | + (−1.13 − 0.846i)2-s + (1.79 + 2.25i)3-s + (0.566 + 1.91i)4-s + (2.89 − 2.30i)5-s + (−0.127 − 4.07i)6-s + (−1.61 − 2.09i)7-s + (0.982 − 2.65i)8-s + (−1.18 + 5.17i)9-s + (−5.22 + 0.164i)10-s + (1.04 − 0.238i)11-s + (−3.30 + 4.72i)12-s + (1.70 − 0.388i)13-s + (0.0583 + 3.74i)14-s + (10.3 + 2.37i)15-s + (−3.35 + 2.17i)16-s + (−2.15 + 4.47i)17-s + ⋯ |
L(s) = 1 | + (−0.801 − 0.598i)2-s + (1.03 + 1.30i)3-s + (0.283 + 0.959i)4-s + (1.29 − 1.03i)5-s + (−0.0522 − 1.66i)6-s + (−0.611 − 0.791i)7-s + (0.347 − 0.937i)8-s + (−0.393 + 1.72i)9-s + (−1.65 + 0.0519i)10-s + (0.314 − 0.0718i)11-s + (−0.953 + 1.36i)12-s + (0.472 − 0.107i)13-s + (0.0155 + 0.999i)14-s + (2.68 + 0.612i)15-s + (−0.839 + 0.543i)16-s + (−0.522 + 1.08i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.999+0.000891i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.999+0.000891i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.999+0.000891i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.999+0.000891i)
|
Particular Values
L(1) |
≈ |
1.26505−0.000563984i |
L(21) |
≈ |
1.26505−0.000563984i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.13+0.846i)T |
| 7 | 1+(1.61+2.09i)T |
good | 3 | 1+(−1.79−2.25i)T+(−0.667+2.92i)T2 |
| 5 | 1+(−2.89+2.30i)T+(1.11−4.87i)T2 |
| 11 | 1+(−1.04+0.238i)T+(9.91−4.77i)T2 |
| 13 | 1+(−1.70+0.388i)T+(11.7−5.64i)T2 |
| 17 | 1+(2.15−4.47i)T+(−10.5−13.2i)T2 |
| 19 | 1+5.54T+19T2 |
| 23 | 1+(−1.41−2.93i)T+(−14.3+17.9i)T2 |
| 29 | 1+(3.37+1.62i)T+(18.0+22.6i)T2 |
| 31 | 1+3.97T+31T2 |
| 37 | 1+(−0.739−0.356i)T+(23.0+28.9i)T2 |
| 41 | 1+(−0.928+0.740i)T+(9.12−39.9i)T2 |
| 43 | 1+(0.119+0.0951i)T+(9.56+41.9i)T2 |
| 47 | 1+(−1.04−4.58i)T+(−42.3+20.3i)T2 |
| 53 | 1+(9.27−4.46i)T+(33.0−41.4i)T2 |
| 59 | 1+(−4.35+5.45i)T+(−13.1−57.5i)T2 |
| 61 | 1+(−5.04+10.4i)T+(−38.0−47.6i)T2 |
| 67 | 1+6.15iT−67T2 |
| 71 | 1+(2.60+5.40i)T+(−44.2+55.5i)T2 |
| 73 | 1+(12.6+2.88i)T+(65.7+31.6i)T2 |
| 79 | 1+10.7iT−79T2 |
| 83 | 1+(2.65−11.6i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−14.5−3.31i)T+(80.1+38.6i)T2 |
| 97 | 1−4.59iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84425157384000821077339349703, −10.90827079367995036458550659264, −10.29898613527894119434942439536, −9.375713334429760347249992690121, −9.030317475108074522962995252790, −8.051794342334286903266478232720, −6.25559048209597197431060345043, −4.47455198529290718746763205287, −3.52847065345882393897485417549, −1.89772162623190874095172712851,
1.94652721179471041450947332512, 2.73969694312499794617172353154, 5.82927688263784182177139260274, 6.63365334605281608335065596385, 7.16144675812605530305332986431, 8.664363078139701017471117013203, 9.144677231113018676432330809714, 10.17795088602520798724835935767, 11.40667781835469141118610820852, 12.91520063742106788963729753229