L(s) = 1 | + (−0.368 − 1.36i)2-s + (−1.56 − 1.95i)3-s + (−1.72 + 1.00i)4-s + (−2.80 + 2.23i)5-s + (−2.09 + 2.85i)6-s + (2.40 − 1.09i)7-s + (2.00 + 1.99i)8-s + (−0.728 + 3.19i)9-s + (4.08 + 3.00i)10-s + (−3.69 + 0.843i)11-s + (4.66 + 1.81i)12-s + (−0.397 + 0.0908i)13-s + (−2.38 − 2.88i)14-s + (8.76 + 2.00i)15-s + (1.97 − 3.47i)16-s + (−1.99 + 4.14i)17-s + ⋯ |
L(s) = 1 | + (−0.260 − 0.965i)2-s + (−0.901 − 1.13i)3-s + (−0.864 + 0.502i)4-s + (−1.25 + 1.00i)5-s + (−0.856 + 1.16i)6-s + (0.909 − 0.414i)7-s + (0.710 + 0.703i)8-s + (−0.242 + 1.06i)9-s + (1.29 + 0.951i)10-s + (−1.11 + 0.254i)11-s + (1.34 + 0.523i)12-s + (−0.110 + 0.0251i)13-s + (−0.637 − 0.770i)14-s + (2.26 + 0.516i)15-s + (0.494 − 0.869i)16-s + (−0.483 + 1.00i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.219 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.219 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0545740 + 0.0436740i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0545740 + 0.0436740i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.368 + 1.36i)T \) |
| 7 | \( 1 + (-2.40 + 1.09i)T \) |
good | 3 | \( 1 + (1.56 + 1.95i)T + (-0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (2.80 - 2.23i)T + (1.11 - 4.87i)T^{2} \) |
| 11 | \( 1 + (3.69 - 0.843i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (0.397 - 0.0908i)T + (11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + (1.99 - 4.14i)T + (-10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 + 3.39T + 19T^{2} \) |
| 23 | \( 1 + (-0.764 - 1.58i)T + (-14.3 + 17.9i)T^{2} \) |
| 29 | \( 1 + (-3.44 - 1.65i)T + (18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 + 10.4T + 31T^{2} \) |
| 37 | \( 1 + (4.97 + 2.39i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (6.23 - 4.97i)T + (9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (-1.08 - 0.861i)T + (9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (1.15 + 5.04i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (1.01 - 0.489i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (-6.97 + 8.74i)T + (-13.1 - 57.5i)T^{2} \) |
| 61 | \( 1 + (-3.88 + 8.07i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 - 5.92iT - 67T^{2} \) |
| 71 | \( 1 + (6.36 + 13.2i)T + (-44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-2.53 - 0.577i)T + (65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 - 5.63iT - 79T^{2} \) |
| 83 | \( 1 + (1.68 - 7.39i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (1.80 + 0.412i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + 1.47iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50374430923350875200872568738, −11.56101485183802465325166326425, −10.96937456442211891043464037255, −10.45176754514252179396541752792, −8.374959938551320844948381440305, −7.66694895980453917500118517843, −6.86174424459537540153358739944, −5.10667739076210688426671499310, −3.72775860130623268302482811147, −1.97508749739974956318094550168,
0.07356055962894261887860081863, 4.18026481827591657747882959626, 4.93646849580258050938892439579, 5.51414785263389617328117657678, 7.31292284230162527226556120079, 8.359531043849727880438867577786, 9.003015287452066897193022226692, 10.37744765769235518016264614320, 11.18338301481807514329531773808, 12.11925523179493761012302212454