L(s) = 1 | + (−0.368 − 1.36i)2-s + (−1.56 − 1.95i)3-s + (−1.72 + 1.00i)4-s + (−2.80 + 2.23i)5-s + (−2.09 + 2.85i)6-s + (2.40 − 1.09i)7-s + (2.00 + 1.99i)8-s + (−0.728 + 3.19i)9-s + (4.08 + 3.00i)10-s + (−3.69 + 0.843i)11-s + (4.66 + 1.81i)12-s + (−0.397 + 0.0908i)13-s + (−2.38 − 2.88i)14-s + (8.76 + 2.00i)15-s + (1.97 − 3.47i)16-s + (−1.99 + 4.14i)17-s + ⋯ |
L(s) = 1 | + (−0.260 − 0.965i)2-s + (−0.901 − 1.13i)3-s + (−0.864 + 0.502i)4-s + (−1.25 + 1.00i)5-s + (−0.856 + 1.16i)6-s + (0.909 − 0.414i)7-s + (0.710 + 0.703i)8-s + (−0.242 + 1.06i)9-s + (1.29 + 0.951i)10-s + (−1.11 + 0.254i)11-s + (1.34 + 0.523i)12-s + (−0.110 + 0.0251i)13-s + (−0.637 − 0.770i)14-s + (2.26 + 0.516i)15-s + (0.494 − 0.869i)16-s + (−0.483 + 1.00i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.219−0.975i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.219−0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.219−0.975i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.219−0.975i)
|
Particular Values
L(1) |
≈ |
0.0545740+0.0436740i |
L(21) |
≈ |
0.0545740+0.0436740i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.368+1.36i)T |
| 7 | 1+(−2.40+1.09i)T |
good | 3 | 1+(1.56+1.95i)T+(−0.667+2.92i)T2 |
| 5 | 1+(2.80−2.23i)T+(1.11−4.87i)T2 |
| 11 | 1+(3.69−0.843i)T+(9.91−4.77i)T2 |
| 13 | 1+(0.397−0.0908i)T+(11.7−5.64i)T2 |
| 17 | 1+(1.99−4.14i)T+(−10.5−13.2i)T2 |
| 19 | 1+3.39T+19T2 |
| 23 | 1+(−0.764−1.58i)T+(−14.3+17.9i)T2 |
| 29 | 1+(−3.44−1.65i)T+(18.0+22.6i)T2 |
| 31 | 1+10.4T+31T2 |
| 37 | 1+(4.97+2.39i)T+(23.0+28.9i)T2 |
| 41 | 1+(6.23−4.97i)T+(9.12−39.9i)T2 |
| 43 | 1+(−1.08−0.861i)T+(9.56+41.9i)T2 |
| 47 | 1+(1.15+5.04i)T+(−42.3+20.3i)T2 |
| 53 | 1+(1.01−0.489i)T+(33.0−41.4i)T2 |
| 59 | 1+(−6.97+8.74i)T+(−13.1−57.5i)T2 |
| 61 | 1+(−3.88+8.07i)T+(−38.0−47.6i)T2 |
| 67 | 1−5.92iT−67T2 |
| 71 | 1+(6.36+13.2i)T+(−44.2+55.5i)T2 |
| 73 | 1+(−2.53−0.577i)T+(65.7+31.6i)T2 |
| 79 | 1−5.63iT−79T2 |
| 83 | 1+(1.68−7.39i)T+(−74.7−36.0i)T2 |
| 89 | 1+(1.80+0.412i)T+(80.1+38.6i)T2 |
| 97 | 1+1.47iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50374430923350875200872568738, −11.56101485183802465325166326425, −10.96937456442211891043464037255, −10.45176754514252179396541752792, −8.374959938551320844948381440305, −7.66694895980453917500118517843, −6.86174424459537540153358739944, −5.10667739076210688426671499310, −3.72775860130623268302482811147, −1.97508749739974956318094550168,
0.07356055962894261887860081863, 4.18026481827591657747882959626, 4.93646849580258050938892439579, 5.51414785263389617328117657678, 7.31292284230162527226556120079, 8.359531043849727880438867577786, 9.003015287452066897193022226692, 10.37744765769235518016264614320, 11.18338301481807514329531773808, 12.11925523179493761012302212454