L(s) = 1 | + (−0.167 − 1.40i)2-s + (−1.97 − 1.34i)3-s + (−1.94 + 0.471i)4-s + (−0.0159 − 0.00119i)5-s + (−1.56 + 3.00i)6-s + (−2.59 + 0.509i)7-s + (0.987 + 2.65i)8-s + (0.999 + 2.54i)9-s + (0.000997 + 0.0225i)10-s + (1.65 + 0.649i)11-s + (4.48 + 1.69i)12-s + (−2.07 + 1.65i)13-s + (1.15 + 3.56i)14-s + (0.0299 + 0.0238i)15-s + (3.55 − 1.83i)16-s + (−3.29 − 3.55i)17-s + ⋯ |
L(s) = 1 | + (−0.118 − 0.992i)2-s + (−1.14 − 0.778i)3-s + (−0.971 + 0.235i)4-s + (−0.00713 − 0.000534i)5-s + (−0.637 + 1.22i)6-s + (−0.981 + 0.192i)7-s + (0.349 + 0.937i)8-s + (0.333 + 0.849i)9-s + (0.000315 + 0.00714i)10-s + (0.499 + 0.195i)11-s + (1.29 + 0.487i)12-s + (−0.574 + 0.458i)13-s + (0.307 + 0.951i)14-s + (0.00773 + 0.00616i)15-s + (0.888 − 0.457i)16-s + (−0.799 − 0.861i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.154−0.987i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.154−0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.154−0.987i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.154−0.987i)
|
Particular Values
L(1) |
≈ |
0.0512515+0.0598973i |
L(21) |
≈ |
0.0512515+0.0598973i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.167+1.40i)T |
| 7 | 1+(2.59−0.509i)T |
good | 3 | 1+(1.97+1.34i)T+(1.09+2.79i)T2 |
| 5 | 1+(0.0159+0.00119i)T+(4.94+0.745i)T2 |
| 11 | 1+(−1.65−0.649i)T+(8.06+7.48i)T2 |
| 13 | 1+(2.07−1.65i)T+(2.89−12.6i)T2 |
| 17 | 1+(3.29+3.55i)T+(−1.27+16.9i)T2 |
| 19 | 1+(0.682−1.18i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.75−4.04i)T+(−1.71−22.9i)T2 |
| 29 | 1+(−0.487−2.13i)T+(−26.1+12.5i)T2 |
| 31 | 1+(4.96+8.59i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−1.78−0.549i)T+(30.5+20.8i)T2 |
| 41 | 1+(1.78+3.71i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−4.01+8.34i)T+(−26.8−33.6i)T2 |
| 47 | 1+(9.62−1.45i)T+(44.9−13.8i)T2 |
| 53 | 1+(8.11−2.50i)T+(43.7−29.8i)T2 |
| 59 | 1+(−0.462−6.17i)T+(−58.3+8.79i)T2 |
| 61 | 1+(−2.72+8.81i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−4.78+2.76i)T+(33.5−58.0i)T2 |
| 71 | 1+(−13.9−3.18i)T+(63.9+30.8i)T2 |
| 73 | 1+(1.28−8.51i)T+(−69.7−21.5i)T2 |
| 79 | 1+(0.651+0.375i)T+(39.5+68.4i)T2 |
| 83 | 1+(−2.16+2.71i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−1.89+0.744i)T+(65.2−60.5i)T2 |
| 97 | 1+12.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78968750499295888746913204706, −11.19762458453048150160898567400, −9.857678159359645039657577270513, −9.215508342576611526518926131722, −7.57627110915766591825904086813, −6.47952129123934021518746756745, −5.38541222174242879241800589554, −3.89203718517378298923582742864, −2.07587862909019989010759496339, −0.079650395628756524293527427063,
3.83655563345321916858319296925, 4.89340595710004538381780185396, 6.07857751754432201688332812471, 6.64211749510933408838798826721, 8.129401740114455812258760628264, 9.420628947413872603865293033848, 10.12015065902249145816278007160, 11.01548159421197706366578980666, 12.35102001220771188112962975248, 13.15924787150462195394165345513