Properties

Label 2-14e2-196.103-c1-0-21
Degree $2$
Conductor $196$
Sign $-0.974 + 0.224i$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.19 − 0.748i)2-s + (0.318 + 0.217i)3-s + (0.879 + 1.79i)4-s + (−2.23 − 0.167i)5-s + (−0.219 − 0.499i)6-s + (−2.62 + 0.318i)7-s + (0.289 − 2.81i)8-s + (−1.04 − 2.65i)9-s + (2.55 + 1.87i)10-s + (−4.62 − 1.81i)11-s + (−0.110 + 0.763i)12-s + (4.05 − 3.23i)13-s + (3.38 + 1.58i)14-s + (−0.675 − 0.538i)15-s + (−2.45 + 3.15i)16-s + (−1.83 − 1.97i)17-s + ⋯
L(s)  = 1  + (−0.848 − 0.529i)2-s + (0.184 + 0.125i)3-s + (0.439 + 0.898i)4-s + (−0.998 − 0.0748i)5-s + (−0.0897 − 0.203i)6-s + (−0.992 + 0.120i)7-s + (0.102 − 0.994i)8-s + (−0.347 − 0.884i)9-s + (0.807 + 0.591i)10-s + (−1.39 − 0.547i)11-s + (−0.0317 + 0.220i)12-s + (1.12 − 0.897i)13-s + (0.905 + 0.423i)14-s + (−0.174 − 0.139i)15-s + (−0.613 + 0.789i)16-s + (−0.445 − 0.480i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.224i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 + 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-0.974 + 0.224i$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{196} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ -0.974 + 0.224i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0280597 - 0.246733i\)
\(L(\frac12)\) \(\approx\) \(0.0280597 - 0.246733i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.19 + 0.748i)T \)
7 \( 1 + (2.62 - 0.318i)T \)
good3 \( 1 + (-0.318 - 0.217i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (2.23 + 0.167i)T + (4.94 + 0.745i)T^{2} \)
11 \( 1 + (4.62 + 1.81i)T + (8.06 + 7.48i)T^{2} \)
13 \( 1 + (-4.05 + 3.23i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (1.83 + 1.97i)T + (-1.27 + 16.9i)T^{2} \)
19 \( 1 + (1.20 - 2.08i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.13 - 2.29i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (-1.93 - 8.48i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (0.0585 + 0.101i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.160 + 0.0494i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (4.98 + 10.3i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (1.97 - 4.09i)T + (-26.8 - 33.6i)T^{2} \)
47 \( 1 + (-10.2 + 1.54i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (-2.75 + 0.850i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (0.758 + 10.1i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (2.62 - 8.51i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (-5.07 + 2.92i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (9.49 + 2.16i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (-1.11 + 7.37i)T + (-69.7 - 21.5i)T^{2} \)
79 \( 1 + (11.9 + 6.92i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (1.95 - 2.45i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (1.74 - 0.684i)T + (65.2 - 60.5i)T^{2} \)
97 \( 1 + 1.56iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98424331517771981475810225820, −10.90983694221218018105723073487, −10.18571028739531629491172262597, −8.904705948490811522484078671641, −8.307778144503861947582871922615, −7.21072890055404698518126163787, −5.87363996315331550165698967745, −3.70093868573609931711072338019, −3.03280205363998831721849229211, −0.26228651585725270087900439901, 2.47211402794670663352728996239, 4.35845186989736974727239908425, 5.95007595541657736395751627833, 7.04802250766181684490685186030, 7.992224809273150792254701939019, 8.676685092625751106950127029643, 10.00732704776201795494493680119, 10.80807618357789610867339069991, 11.70496125383986532430676720573, 13.12769080525656103484433998229

Graph of the $Z$-function along the critical line