L(s) = 1 | + (−1.19 − 0.748i)2-s + (0.318 + 0.217i)3-s + (0.879 + 1.79i)4-s + (−2.23 − 0.167i)5-s + (−0.219 − 0.499i)6-s + (−2.62 + 0.318i)7-s + (0.289 − 2.81i)8-s + (−1.04 − 2.65i)9-s + (2.55 + 1.87i)10-s + (−4.62 − 1.81i)11-s + (−0.110 + 0.763i)12-s + (4.05 − 3.23i)13-s + (3.38 + 1.58i)14-s + (−0.675 − 0.538i)15-s + (−2.45 + 3.15i)16-s + (−1.83 − 1.97i)17-s + ⋯ |
L(s) = 1 | + (−0.848 − 0.529i)2-s + (0.184 + 0.125i)3-s + (0.439 + 0.898i)4-s + (−0.998 − 0.0748i)5-s + (−0.0897 − 0.203i)6-s + (−0.992 + 0.120i)7-s + (0.102 − 0.994i)8-s + (−0.347 − 0.884i)9-s + (0.807 + 0.591i)10-s + (−1.39 − 0.547i)11-s + (−0.0317 + 0.220i)12-s + (1.12 − 0.897i)13-s + (0.905 + 0.423i)14-s + (−0.174 − 0.139i)15-s + (−0.613 + 0.789i)16-s + (−0.445 − 0.480i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.974+0.224i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(−0.974+0.224i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.974+0.224i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), −0.974+0.224i)
|
Particular Values
L(1) |
≈ |
0.0280597−0.246733i |
L(21) |
≈ |
0.0280597−0.246733i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.19+0.748i)T |
| 7 | 1+(2.62−0.318i)T |
good | 3 | 1+(−0.318−0.217i)T+(1.09+2.79i)T2 |
| 5 | 1+(2.23+0.167i)T+(4.94+0.745i)T2 |
| 11 | 1+(4.62+1.81i)T+(8.06+7.48i)T2 |
| 13 | 1+(−4.05+3.23i)T+(2.89−12.6i)T2 |
| 17 | 1+(1.83+1.97i)T+(−1.27+16.9i)T2 |
| 19 | 1+(1.20−2.08i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.13−2.29i)T+(−1.71−22.9i)T2 |
| 29 | 1+(−1.93−8.48i)T+(−26.1+12.5i)T2 |
| 31 | 1+(0.0585+0.101i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.160+0.0494i)T+(30.5+20.8i)T2 |
| 41 | 1+(4.98+10.3i)T+(−25.5+32.0i)T2 |
| 43 | 1+(1.97−4.09i)T+(−26.8−33.6i)T2 |
| 47 | 1+(−10.2+1.54i)T+(44.9−13.8i)T2 |
| 53 | 1+(−2.75+0.850i)T+(43.7−29.8i)T2 |
| 59 | 1+(0.758+10.1i)T+(−58.3+8.79i)T2 |
| 61 | 1+(2.62−8.51i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−5.07+2.92i)T+(33.5−58.0i)T2 |
| 71 | 1+(9.49+2.16i)T+(63.9+30.8i)T2 |
| 73 | 1+(−1.11+7.37i)T+(−69.7−21.5i)T2 |
| 79 | 1+(11.9+6.92i)T+(39.5+68.4i)T2 |
| 83 | 1+(1.95−2.45i)T+(−18.4−80.9i)T2 |
| 89 | 1+(1.74−0.684i)T+(65.2−60.5i)T2 |
| 97 | 1+1.56iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98424331517771981475810225820, −10.90983694221218018105723073487, −10.18571028739531629491172262597, −8.904705948490811522484078671641, −8.307778144503861947582871922615, −7.21072890055404698518126163787, −5.87363996315331550165698967745, −3.70093868573609931711072338019, −3.03280205363998831721849229211, −0.26228651585725270087900439901,
2.47211402794670663352728996239, 4.35845186989736974727239908425, 5.95007595541657736395751627833, 7.04802250766181684490685186030, 7.992224809273150792254701939019, 8.676685092625751106950127029643, 10.00732704776201795494493680119, 10.80807618357789610867339069991, 11.70496125383986532430676720573, 13.12769080525656103484433998229