L(s) = 1 | + (0.301 − 1.38i)2-s + (2.71 + 1.85i)3-s + (−1.81 − 0.832i)4-s + (1.96 + 0.147i)5-s + (3.37 − 3.19i)6-s + (−2.22 − 1.42i)7-s + (−1.69 + 2.26i)8-s + (2.85 + 7.26i)9-s + (0.794 − 2.66i)10-s + (−4.60 − 1.80i)11-s + (−3.39 − 5.62i)12-s + (0.963 − 0.768i)13-s + (−2.64 + 2.64i)14-s + (5.06 + 4.03i)15-s + (2.61 + 3.02i)16-s + (−0.724 − 0.780i)17-s + ⋯ |
L(s) = 1 | + (0.212 − 0.977i)2-s + (1.56 + 1.06i)3-s + (−0.909 − 0.416i)4-s + (0.878 + 0.0658i)5-s + (1.37 − 1.30i)6-s + (−0.842 − 0.539i)7-s + (−0.600 + 0.799i)8-s + (0.950 + 2.42i)9-s + (0.251 − 0.844i)10-s + (−1.38 − 0.544i)11-s + (−0.980 − 1.62i)12-s + (0.267 − 0.213i)13-s + (−0.706 + 0.708i)14-s + (1.30 + 1.04i)15-s + (0.653 + 0.756i)16-s + (−0.175 − 0.189i)17-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(0.892+0.450i)Λ(2−s)
Λ(s)=(=(196s/2ΓC(s+1/2)L(s)(0.892+0.450i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
0.892+0.450i
|
Analytic conductor: |
1.56506 |
Root analytic conductor: |
1.25102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :1/2), 0.892+0.450i)
|
Particular Values
L(1) |
≈ |
1.82783−0.435318i |
L(21) |
≈ |
1.82783−0.435318i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.301+1.38i)T |
| 7 | 1+(2.22+1.42i)T |
good | 3 | 1+(−2.71−1.85i)T+(1.09+2.79i)T2 |
| 5 | 1+(−1.96−0.147i)T+(4.94+0.745i)T2 |
| 11 | 1+(4.60+1.80i)T+(8.06+7.48i)T2 |
| 13 | 1+(−0.963+0.768i)T+(2.89−12.6i)T2 |
| 17 | 1+(0.724+0.780i)T+(−1.27+16.9i)T2 |
| 19 | 1+(−0.263+0.456i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.53+1.65i)T+(−1.71−22.9i)T2 |
| 29 | 1+(0.514+2.25i)T+(−26.1+12.5i)T2 |
| 31 | 1+(2.23+3.87i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.148−0.0457i)T+(30.5+20.8i)T2 |
| 41 | 1+(−1.00−2.09i)T+(−25.5+32.0i)T2 |
| 43 | 1+(4.03−8.37i)T+(−26.8−33.6i)T2 |
| 47 | 1+(−9.44+1.42i)T+(44.9−13.8i)T2 |
| 53 | 1+(2.10−0.649i)T+(43.7−29.8i)T2 |
| 59 | 1+(−0.949−12.6i)T+(−58.3+8.79i)T2 |
| 61 | 1+(0.310−1.00i)T+(−50.4−34.3i)T2 |
| 67 | 1+(0.898−0.518i)T+(33.5−58.0i)T2 |
| 71 | 1+(−11.2−2.56i)T+(63.9+30.8i)T2 |
| 73 | 1+(−0.954+6.33i)T+(−69.7−21.5i)T2 |
| 79 | 1+(7.88+4.55i)T+(39.5+68.4i)T2 |
| 83 | 1+(−5.49+6.89i)T+(−18.4−80.9i)T2 |
| 89 | 1+(8.70−3.41i)T+(65.2−60.5i)T2 |
| 97 | 1+7.11iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.96822916284343413706175962986, −10.95859461731912923303279794887, −10.25442037080331314627091650995, −9.692664511005179806175362468255, −8.861091057941341384535290462141, −7.80004486433542395916095709296, −5.69449438497478913233933814356, −4.40426382767895965407178419320, −3.21178616441235297731123680062, −2.43537699583699612841144249481,
2.25169043259422713892605854663, 3.48077222779893102072130200406, 5.47157298235666362998483699341, 6.61132768257009392082003087886, 7.42973595922272093086660545191, 8.456834435733624741333393222930, 9.219351686913492345537844382541, 9.995152475199210160865063879600, 12.47611335969163568509339897080, 12.87139432608284534923228496976