Properties

Label 2-14e2-196.103-c1-0-14
Degree 22
Conductor 196196
Sign 0.4500.892i0.450 - 0.892i
Analytic cond. 1.565061.56506
Root an. cond. 1.251021.25102
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.976 + 1.02i)2-s + (0.268 + 0.182i)3-s + (−0.0944 + 1.99i)4-s + (3.60 + 0.269i)5-s + (0.0746 + 0.453i)6-s + (−1.91 − 1.82i)7-s + (−2.13 + 1.85i)8-s + (−1.05 − 2.69i)9-s + (3.23 + 3.94i)10-s + (0.946 + 0.371i)11-s + (−0.390 + 0.518i)12-s + (−2.72 + 2.17i)13-s + (−0.00528 − 3.74i)14-s + (0.916 + 0.731i)15-s + (−3.98 − 0.377i)16-s + (−1.83 − 1.97i)17-s + ⋯
L(s)  = 1  + (0.690 + 0.723i)2-s + (0.154 + 0.105i)3-s + (−0.0472 + 0.998i)4-s + (1.61 + 0.120i)5-s + (0.0304 + 0.184i)6-s + (−0.724 − 0.689i)7-s + (−0.755 + 0.655i)8-s + (−0.352 − 0.898i)9-s + (1.02 + 1.24i)10-s + (0.285 + 0.111i)11-s + (−0.112 + 0.149i)12-s + (−0.755 + 0.602i)13-s + (−0.00141 − 0.999i)14-s + (0.236 + 0.188i)15-s + (−0.995 − 0.0943i)16-s + (−0.444 − 0.478i)17-s + ⋯

Functional equation

Λ(s)=(196s/2ΓC(s)L(s)=((0.4500.892i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(196s/2ΓC(s+1/2)L(s)=((0.4500.892i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 196196    =    22722^{2} \cdot 7^{2}
Sign: 0.4500.892i0.450 - 0.892i
Analytic conductor: 1.565061.56506
Root analytic conductor: 1.251021.25102
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ196(103,)\chi_{196} (103, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 196, ( :1/2), 0.4500.892i)(2,\ 196,\ (\ :1/2),\ 0.450 - 0.892i)

Particular Values

L(1)L(1) \approx 1.60791+0.989640i1.60791 + 0.989640i
L(12)L(\frac12) \approx 1.60791+0.989640i1.60791 + 0.989640i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.9761.02i)T 1 + (-0.976 - 1.02i)T
7 1+(1.91+1.82i)T 1 + (1.91 + 1.82i)T
good3 1+(0.2680.182i)T+(1.09+2.79i)T2 1 + (-0.268 - 0.182i)T + (1.09 + 2.79i)T^{2}
5 1+(3.600.269i)T+(4.94+0.745i)T2 1 + (-3.60 - 0.269i)T + (4.94 + 0.745i)T^{2}
11 1+(0.9460.371i)T+(8.06+7.48i)T2 1 + (-0.946 - 0.371i)T + (8.06 + 7.48i)T^{2}
13 1+(2.722.17i)T+(2.8912.6i)T2 1 + (2.72 - 2.17i)T + (2.89 - 12.6i)T^{2}
17 1+(1.83+1.97i)T+(1.27+16.9i)T2 1 + (1.83 + 1.97i)T + (-1.27 + 16.9i)T^{2}
19 1+(2.183.77i)T+(9.516.4i)T2 1 + (2.18 - 3.77i)T + (-9.5 - 16.4i)T^{2}
23 1+(4.02+4.33i)T+(1.7122.9i)T2 1 + (-4.02 + 4.33i)T + (-1.71 - 22.9i)T^{2}
29 1+(1.265.55i)T+(26.1+12.5i)T2 1 + (-1.26 - 5.55i)T + (-26.1 + 12.5i)T^{2}
31 1+(2.93+5.08i)T+(15.5+26.8i)T2 1 + (2.93 + 5.08i)T + (-15.5 + 26.8i)T^{2}
37 1+(2.33+0.721i)T+(30.5+20.8i)T2 1 + (2.33 + 0.721i)T + (30.5 + 20.8i)T^{2}
41 1+(2.01+4.17i)T+(25.5+32.0i)T2 1 + (2.01 + 4.17i)T + (-25.5 + 32.0i)T^{2}
43 1+(1.13+2.35i)T+(26.833.6i)T2 1 + (-1.13 + 2.35i)T + (-26.8 - 33.6i)T^{2}
47 1+(1.76+0.266i)T+(44.913.8i)T2 1 + (-1.76 + 0.266i)T + (44.9 - 13.8i)T^{2}
53 1+(7.54+2.32i)T+(43.729.8i)T2 1 + (-7.54 + 2.32i)T + (43.7 - 29.8i)T^{2}
59 1+(1.0413.8i)T+(58.3+8.79i)T2 1 + (-1.04 - 13.8i)T + (-58.3 + 8.79i)T^{2}
61 1+(1.605.20i)T+(50.434.3i)T2 1 + (1.60 - 5.20i)T + (-50.4 - 34.3i)T^{2}
67 1+(12.0+6.98i)T+(33.558.0i)T2 1 + (-12.0 + 6.98i)T + (33.5 - 58.0i)T^{2}
71 1+(6.12+1.39i)T+(63.9+30.8i)T2 1 + (6.12 + 1.39i)T + (63.9 + 30.8i)T^{2}
73 1+(0.391+2.59i)T+(69.721.5i)T2 1 + (-0.391 + 2.59i)T + (-69.7 - 21.5i)T^{2}
79 1+(8.775.06i)T+(39.5+68.4i)T2 1 + (-8.77 - 5.06i)T + (39.5 + 68.4i)T^{2}
83 1+(9.4311.8i)T+(18.480.9i)T2 1 + (9.43 - 11.8i)T + (-18.4 - 80.9i)T^{2}
89 1+(3.571.40i)T+(65.260.5i)T2 1 + (3.57 - 1.40i)T + (65.2 - 60.5i)T^{2}
97 113.8iT97T2 1 - 13.8iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.90605551865408042486213457427, −12.11311132598404250569090002429, −10.57155845436452298637546452544, −9.485837337230696867553608952294, −8.867486137738589577053088167096, −7.01739435734067323248781915406, −6.49953154186960013313300943659, −5.44097897469576626846341071406, −4.00640824814492293688146882031, −2.57351785610940353612962619274, 2.02866093142643035613051914594, 2.92822293000588688095801486217, 4.99142988789807192240941241977, 5.72802583020417240798556614232, 6.73465515125069556027795424107, 8.748366573622457618811712970633, 9.578489364491978753162043109759, 10.35130198947635444540001396009, 11.36742591424558317096897097778, 12.71818857668034559558842990233

Graph of the ZZ-function along the critical line