L(s) = 1 | + (0.976 + 1.02i)2-s + (0.268 + 0.182i)3-s + (−0.0944 + 1.99i)4-s + (3.60 + 0.269i)5-s + (0.0746 + 0.453i)6-s + (−1.91 − 1.82i)7-s + (−2.13 + 1.85i)8-s + (−1.05 − 2.69i)9-s + (3.23 + 3.94i)10-s + (0.946 + 0.371i)11-s + (−0.390 + 0.518i)12-s + (−2.72 + 2.17i)13-s + (−0.00528 − 3.74i)14-s + (0.916 + 0.731i)15-s + (−3.98 − 0.377i)16-s + (−1.83 − 1.97i)17-s + ⋯ |
L(s) = 1 | + (0.690 + 0.723i)2-s + (0.154 + 0.105i)3-s + (−0.0472 + 0.998i)4-s + (1.61 + 0.120i)5-s + (0.0304 + 0.184i)6-s + (−0.724 − 0.689i)7-s + (−0.755 + 0.655i)8-s + (−0.352 − 0.898i)9-s + (1.02 + 1.24i)10-s + (0.285 + 0.111i)11-s + (−0.112 + 0.149i)12-s + (−0.755 + 0.602i)13-s + (−0.00141 − 0.999i)14-s + (0.236 + 0.188i)15-s + (−0.995 − 0.0943i)16-s + (−0.444 − 0.478i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60791 + 0.989640i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60791 + 0.989640i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.976 - 1.02i)T \) |
| 7 | \( 1 + (1.91 + 1.82i)T \) |
good | 3 | \( 1 + (-0.268 - 0.182i)T + (1.09 + 2.79i)T^{2} \) |
| 5 | \( 1 + (-3.60 - 0.269i)T + (4.94 + 0.745i)T^{2} \) |
| 11 | \( 1 + (-0.946 - 0.371i)T + (8.06 + 7.48i)T^{2} \) |
| 13 | \( 1 + (2.72 - 2.17i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (1.83 + 1.97i)T + (-1.27 + 16.9i)T^{2} \) |
| 19 | \( 1 + (2.18 - 3.77i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.02 + 4.33i)T + (-1.71 - 22.9i)T^{2} \) |
| 29 | \( 1 + (-1.26 - 5.55i)T + (-26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 + (2.93 + 5.08i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.33 + 0.721i)T + (30.5 + 20.8i)T^{2} \) |
| 41 | \( 1 + (2.01 + 4.17i)T + (-25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (-1.13 + 2.35i)T + (-26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-1.76 + 0.266i)T + (44.9 - 13.8i)T^{2} \) |
| 53 | \( 1 + (-7.54 + 2.32i)T + (43.7 - 29.8i)T^{2} \) |
| 59 | \( 1 + (-1.04 - 13.8i)T + (-58.3 + 8.79i)T^{2} \) |
| 61 | \( 1 + (1.60 - 5.20i)T + (-50.4 - 34.3i)T^{2} \) |
| 67 | \( 1 + (-12.0 + 6.98i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.12 + 1.39i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-0.391 + 2.59i)T + (-69.7 - 21.5i)T^{2} \) |
| 79 | \( 1 + (-8.77 - 5.06i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9.43 - 11.8i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (3.57 - 1.40i)T + (65.2 - 60.5i)T^{2} \) |
| 97 | \( 1 - 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.90605551865408042486213457427, −12.11311132598404250569090002429, −10.57155845436452298637546452544, −9.485837337230696867553608952294, −8.867486137738589577053088167096, −7.01739435734067323248781915406, −6.49953154186960013313300943659, −5.44097897469576626846341071406, −4.00640824814492293688146882031, −2.57351785610940353612962619274,
2.02866093142643035613051914594, 2.92822293000588688095801486217, 4.99142988789807192240941241977, 5.72802583020417240798556614232, 6.73465515125069556027795424107, 8.748366573622457618811712970633, 9.578489364491978753162043109759, 10.35130198947635444540001396009, 11.36742591424558317096897097778, 12.71818857668034559558842990233