L(s) = 1 | − 26·3-s − 16·5-s + 433·9-s + 8·11-s − 684·13-s + 416·15-s + 2.21e3·17-s + 2.69e3·19-s + 3.34e3·23-s − 2.86e3·25-s − 4.94e3·27-s − 3.25e3·29-s − 4.78e3·31-s − 208·33-s − 1.14e4·37-s + 1.77e4·39-s − 1.33e4·41-s − 928·43-s − 6.92e3·45-s − 1.21e3·47-s − 5.76e4·51-s + 1.31e4·53-s − 128·55-s − 7.01e4·57-s − 3.47e4·59-s + 1.03e3·61-s + 1.09e4·65-s + ⋯ |
L(s) = 1 | − 1.66·3-s − 0.286·5-s + 1.78·9-s + 0.0199·11-s − 1.12·13-s + 0.477·15-s + 1.86·17-s + 1.71·19-s + 1.31·23-s − 0.918·25-s − 1.30·27-s − 0.718·29-s − 0.894·31-s − 0.0332·33-s − 1.37·37-s + 1.87·39-s − 1.24·41-s − 0.0765·43-s − 0.510·45-s − 0.0800·47-s − 3.10·51-s + 0.641·53-s − 0.00570·55-s − 2.85·57-s − 1.29·59-s + 0.0355·61-s + 0.321·65-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+26T+p5T2 |
| 5 | 1+16T+p5T2 |
| 11 | 1−8T+p5T2 |
| 13 | 1+684T+p5T2 |
| 17 | 1−2218T+p5T2 |
| 19 | 1−142pT+p5T2 |
| 23 | 1−3344T+p5T2 |
| 29 | 1+3254T+p5T2 |
| 31 | 1+4788T+p5T2 |
| 37 | 1+310pT+p5T2 |
| 41 | 1+13350T+p5T2 |
| 43 | 1+928T+p5T2 |
| 47 | 1+1212T+p5T2 |
| 53 | 1−13110T+p5T2 |
| 59 | 1+34702T+p5T2 |
| 61 | 1−1032T+p5T2 |
| 67 | 1−10108T+p5T2 |
| 71 | 1−62720T+p5T2 |
| 73 | 1−18926T+p5T2 |
| 79 | 1−11400T+p5T2 |
| 83 | 1+88958T+p5T2 |
| 89 | 1+19722T+p5T2 |
| 97 | 1+17062T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33471956710895150907029557543, −10.25188740449509304852350380857, −9.509433783961479908174097382477, −7.65460118025772319897637611203, −6.98565635072543990461380114714, −5.48558806131182120012246832133, −5.14065714893607491960918807244, −3.45912737019757210542685232567, −1.26148521739396053398035059599, 0,
1.26148521739396053398035059599, 3.45912737019757210542685232567, 5.14065714893607491960918807244, 5.48558806131182120012246832133, 6.98565635072543990461380114714, 7.65460118025772319897637611203, 9.509433783961479908174097382477, 10.25188740449509304852350380857, 11.33471956710895150907029557543