Properties

Label 2-14e2-1.1-c5-0-13
Degree $2$
Conductor $196$
Sign $-1$
Analytic cond. $31.4352$
Root an. cond. $5.60671$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·3-s − 54·5-s − 99·9-s + 540·11-s + 418·13-s − 648·15-s − 594·17-s − 836·19-s − 4.10e3·23-s − 209·25-s − 4.10e3·27-s − 594·29-s − 4.25e3·31-s + 6.48e3·33-s − 298·37-s + 5.01e3·39-s − 1.72e4·41-s − 1.21e4·43-s + 5.34e3·45-s + 1.29e3·47-s − 7.12e3·51-s + 1.94e4·53-s − 2.91e4·55-s − 1.00e4·57-s + 7.66e3·59-s + 3.47e4·61-s − 2.25e4·65-s + ⋯
L(s)  = 1  + 0.769·3-s − 0.965·5-s − 0.407·9-s + 1.34·11-s + 0.685·13-s − 0.743·15-s − 0.498·17-s − 0.531·19-s − 1.61·23-s − 0.0668·25-s − 1.08·27-s − 0.131·29-s − 0.795·31-s + 1.03·33-s − 0.0357·37-s + 0.528·39-s − 1.60·41-s − 0.997·43-s + 0.393·45-s + 0.0855·47-s − 0.383·51-s + 0.953·53-s − 1.29·55-s − 0.408·57-s + 0.286·59-s + 1.19·61-s − 0.662·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(31.4352\)
Root analytic conductor: \(5.60671\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 196,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 4 p T + p^{5} T^{2} \)
5 \( 1 + 54 T + p^{5} T^{2} \)
11 \( 1 - 540 T + p^{5} T^{2} \)
13 \( 1 - 418 T + p^{5} T^{2} \)
17 \( 1 + 594 T + p^{5} T^{2} \)
19 \( 1 + 44 p T + p^{5} T^{2} \)
23 \( 1 + 4104 T + p^{5} T^{2} \)
29 \( 1 + 594 T + p^{5} T^{2} \)
31 \( 1 + 4256 T + p^{5} T^{2} \)
37 \( 1 + 298 T + p^{5} T^{2} \)
41 \( 1 + 17226 T + p^{5} T^{2} \)
43 \( 1 + 12100 T + p^{5} T^{2} \)
47 \( 1 - 1296 T + p^{5} T^{2} \)
53 \( 1 - 19494 T + p^{5} T^{2} \)
59 \( 1 - 7668 T + p^{5} T^{2} \)
61 \( 1 - 34738 T + p^{5} T^{2} \)
67 \( 1 - 21812 T + p^{5} T^{2} \)
71 \( 1 + 46872 T + p^{5} T^{2} \)
73 \( 1 + 67562 T + p^{5} T^{2} \)
79 \( 1 + 76912 T + p^{5} T^{2} \)
83 \( 1 + 67716 T + p^{5} T^{2} \)
89 \( 1 + 29754 T + p^{5} T^{2} \)
97 \( 1 - 122398 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44685186150128413106762335950, −10.03503985661933840888228477404, −8.773279524208492506143451817734, −8.353785535572860198352928879109, −7.12887503936441446215887311078, −5.96123271535316744908512171002, −4.14992916287121959950978852690, −3.49474016109518129157168649396, −1.85204006631698210774758760246, 0, 1.85204006631698210774758760246, 3.49474016109518129157168649396, 4.14992916287121959950978852690, 5.96123271535316744908512171002, 7.12887503936441446215887311078, 8.353785535572860198352928879109, 8.773279524208492506143451817734, 10.03503985661933840888228477404, 11.44685186150128413106762335950

Graph of the $Z$-function along the critical line