L(s) = 1 | + 12·3-s − 54·5-s − 99·9-s + 540·11-s + 418·13-s − 648·15-s − 594·17-s − 836·19-s − 4.10e3·23-s − 209·25-s − 4.10e3·27-s − 594·29-s − 4.25e3·31-s + 6.48e3·33-s − 298·37-s + 5.01e3·39-s − 1.72e4·41-s − 1.21e4·43-s + 5.34e3·45-s + 1.29e3·47-s − 7.12e3·51-s + 1.94e4·53-s − 2.91e4·55-s − 1.00e4·57-s + 7.66e3·59-s + 3.47e4·61-s − 2.25e4·65-s + ⋯ |
L(s) = 1 | + 0.769·3-s − 0.965·5-s − 0.407·9-s + 1.34·11-s + 0.685·13-s − 0.743·15-s − 0.498·17-s − 0.531·19-s − 1.61·23-s − 0.0668·25-s − 1.08·27-s − 0.131·29-s − 0.795·31-s + 1.03·33-s − 0.0357·37-s + 0.528·39-s − 1.60·41-s − 0.997·43-s + 0.393·45-s + 0.0855·47-s − 0.383·51-s + 0.953·53-s − 1.29·55-s − 0.408·57-s + 0.286·59-s + 1.19·61-s − 0.662·65-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1−4pT+p5T2 |
| 5 | 1+54T+p5T2 |
| 11 | 1−540T+p5T2 |
| 13 | 1−418T+p5T2 |
| 17 | 1+594T+p5T2 |
| 19 | 1+44pT+p5T2 |
| 23 | 1+4104T+p5T2 |
| 29 | 1+594T+p5T2 |
| 31 | 1+4256T+p5T2 |
| 37 | 1+298T+p5T2 |
| 41 | 1+17226T+p5T2 |
| 43 | 1+12100T+p5T2 |
| 47 | 1−1296T+p5T2 |
| 53 | 1−19494T+p5T2 |
| 59 | 1−7668T+p5T2 |
| 61 | 1−34738T+p5T2 |
| 67 | 1−21812T+p5T2 |
| 71 | 1+46872T+p5T2 |
| 73 | 1+67562T+p5T2 |
| 79 | 1+76912T+p5T2 |
| 83 | 1+67716T+p5T2 |
| 89 | 1+29754T+p5T2 |
| 97 | 1−122398T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44685186150128413106762335950, −10.03503985661933840888228477404, −8.773279524208492506143451817734, −8.353785535572860198352928879109, −7.12887503936441446215887311078, −5.96123271535316744908512171002, −4.14992916287121959950978852690, −3.49474016109518129157168649396, −1.85204006631698210774758760246, 0,
1.85204006631698210774758760246, 3.49474016109518129157168649396, 4.14992916287121959950978852690, 5.96123271535316744908512171002, 7.12887503936441446215887311078, 8.353785535572860198352928879109, 8.773279524208492506143451817734, 10.03503985661933840888228477404, 11.44685186150128413106762335950