L(s) = 1 | + (0.104 − 0.994i)3-s + (−0.244 − 1.14i)7-s + (−0.978 − 0.207i)9-s + (0.169 + 0.379i)13-s + (0.604 − 1.35i)19-s + (−1.16 + 0.122i)21-s + (−0.5 − 0.866i)25-s + (−0.309 + 0.951i)27-s + (−0.809 − 0.587i)31-s + (−0.704 + 0.406i)37-s + (0.395 − 0.128i)39-s + (−0.190 − 0.0850i)43-s + (−0.348 + 0.155i)49-s + (−1.28 − 0.743i)57-s + 1.90i·61-s + ⋯ |
L(s) = 1 | + (0.104 − 0.994i)3-s + (−0.244 − 1.14i)7-s + (−0.978 − 0.207i)9-s + (0.169 + 0.379i)13-s + (0.604 − 1.35i)19-s + (−1.16 + 0.122i)21-s + (−0.5 − 0.866i)25-s + (−0.309 + 0.951i)27-s + (−0.809 − 0.587i)31-s + (−0.704 + 0.406i)37-s + (0.395 − 0.128i)39-s + (−0.190 − 0.0850i)43-s + (−0.348 + 0.155i)49-s + (−1.28 − 0.743i)57-s + 1.90i·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9766960292\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9766960292\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.104 + 0.994i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.244 + 1.14i)T + (-0.913 + 0.406i)T^{2} \) |
| 11 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.169 - 0.379i)T + (-0.669 + 0.743i)T^{2} \) |
| 17 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 19 | \( 1 + (-0.604 + 1.35i)T + (-0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.704 - 0.406i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 43 | \( 1 + (0.190 + 0.0850i)T + (0.669 + 0.743i)T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 59 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 61 | \( 1 - 1.90iT - T^{2} \) |
| 67 | \( 1 + (-1.64 - 0.951i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 73 | \( 1 + (-1.47 + 1.33i)T + (0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (-0.413 + 0.459i)T + (-0.104 - 0.994i)T^{2} \) |
| 83 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 89 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.604 + 1.86i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.328287373272139780714105408787, −8.537766555744378109883694467518, −7.62106765937741936723963670113, −7.04839286319987380083623864120, −6.43017220077583513118860154987, −5.38379793652504079128515817292, −4.25610020132000682892530790121, −3.26834116472072706325282959127, −2.12372399670474804610864863705, −0.78130977276980580490140170808,
2.00834466136407659445449293584, 3.21994223356112103808607822013, 3.82364614736547032970623540726, 5.27906006013029102590899548573, 5.49220099664410468472059419967, 6.52847776878794947495930382810, 7.82763811950549850547750234049, 8.457906195009926514159031319658, 9.345630772468860954359640781711, 9.725696379404937863842979644768