L(s) = 1 | + 0.678·3-s + 2.56·5-s − 4.63·7-s − 2.53·9-s + 0.0824i·11-s + 5.74i·13-s + 1.73·15-s + 2.55i·17-s − 4.26i·19-s − 3.14·21-s + (−2.75 − 3.92i)23-s + 1.56·25-s − 3.76·27-s + 4.77i·29-s + 6.46i·31-s + ⋯ |
L(s) = 1 | + 0.391·3-s + 1.14·5-s − 1.75·7-s − 0.846·9-s + 0.0248i·11-s + 1.59i·13-s + 0.449·15-s + 0.619i·17-s − 0.978i·19-s − 0.686·21-s + (−0.574 − 0.818i)23-s + 0.312·25-s − 0.723·27-s + 0.886i·29-s + 1.16i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7391463743\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7391463743\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + (2.75 + 3.92i)T \) |
good | 3 | \( 1 - 0.678T + 3T^{2} \) |
| 5 | \( 1 - 2.56T + 5T^{2} \) |
| 7 | \( 1 + 4.63T + 7T^{2} \) |
| 11 | \( 1 - 0.0824iT - 11T^{2} \) |
| 13 | \( 1 - 5.74iT - 13T^{2} \) |
| 17 | \( 1 - 2.55iT - 17T^{2} \) |
| 19 | \( 1 + 4.26iT - 19T^{2} \) |
| 29 | \( 1 - 4.77iT - 29T^{2} \) |
| 31 | \( 1 - 6.46iT - 31T^{2} \) |
| 37 | \( 1 + 7.41T + 37T^{2} \) |
| 41 | \( 1 + 4.66T + 41T^{2} \) |
| 43 | \( 1 + 0.420iT - 43T^{2} \) |
| 47 | \( 1 - 9.59iT - 47T^{2} \) |
| 53 | \( 1 + 9.22T + 53T^{2} \) |
| 59 | \( 1 + 2.10T + 59T^{2} \) |
| 61 | \( 1 - 6.94T + 61T^{2} \) |
| 67 | \( 1 - 0.188iT - 67T^{2} \) |
| 71 | \( 1 - 3.17iT - 71T^{2} \) |
| 73 | \( 1 - 4.82T + 73T^{2} \) |
| 79 | \( 1 + 11.4T + 79T^{2} \) |
| 83 | \( 1 + 7.33iT - 83T^{2} \) |
| 89 | \( 1 + 11.4iT - 89T^{2} \) |
| 97 | \( 1 + 3.42iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.711122859595870934709739844202, −8.985886235217320488576127711342, −8.679528215131089575224524148586, −7.11389303662125459460946289101, −6.45998709239387935021916973167, −6.00331163913035337624458992670, −4.85762430601031309999171293757, −3.59835163660469423242448825132, −2.78949909021739262601842608451, −1.83185072869029956566155298436,
0.24745130684828136338592466275, 2.13233089006903070858485248365, 3.06254399255493850691436067211, 3.65495193960046644530817197973, 5.49431352517080624762907279021, 5.77619689054682775394670022739, 6.55926323042297021250589849296, 7.66561119233227561144891168170, 8.463572612862026038454651215714, 9.446537136909189897509405966108