L(s) = 1 | + (−2.38 − 2.38i)3-s + (−1.82 + 1.82i)5-s + 2.41i·7-s + 8.37i·9-s + (−4.14 + 4.14i)11-s + (1.12 + 1.12i)13-s + 8.71·15-s − 1.95·17-s + (−1.61 − 1.61i)19-s + (5.76 − 5.76i)21-s − i·23-s − 1.67i·25-s + (12.8 − 12.8i)27-s + (−4.48 − 4.48i)29-s − 4.66·31-s + ⋯ |
L(s) = 1 | + (−1.37 − 1.37i)3-s + (−0.817 + 0.817i)5-s + 0.913i·7-s + 2.79i·9-s + (−1.24 + 1.24i)11-s + (0.313 + 0.313i)13-s + 2.24·15-s − 0.475·17-s + (−0.370 − 0.370i)19-s + (1.25 − 1.25i)21-s − 0.208i·23-s − 0.335i·25-s + (2.46 − 2.46i)27-s + (−0.833 − 0.833i)29-s − 0.838·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.650 + 0.759i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.650 + 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.08371560193\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08371560193\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (2.38 + 2.38i)T + 3iT^{2} \) |
| 5 | \( 1 + (1.82 - 1.82i)T - 5iT^{2} \) |
| 7 | \( 1 - 2.41iT - 7T^{2} \) |
| 11 | \( 1 + (4.14 - 4.14i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.12 - 1.12i)T + 13iT^{2} \) |
| 17 | \( 1 + 1.95T + 17T^{2} \) |
| 19 | \( 1 + (1.61 + 1.61i)T + 19iT^{2} \) |
| 29 | \( 1 + (4.48 + 4.48i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.66T + 31T^{2} \) |
| 37 | \( 1 + (-4.42 + 4.42i)T - 37iT^{2} \) |
| 41 | \( 1 - 3.93iT - 41T^{2} \) |
| 43 | \( 1 + (1.65 - 1.65i)T - 43iT^{2} \) |
| 47 | \( 1 - 5.02T + 47T^{2} \) |
| 53 | \( 1 + (5.60 - 5.60i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.15 - 2.15i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.69 + 3.69i)T + 61iT^{2} \) |
| 67 | \( 1 + (-5.23 - 5.23i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.94iT - 71T^{2} \) |
| 73 | \( 1 + 8.79iT - 73T^{2} \) |
| 79 | \( 1 - 0.555T + 79T^{2} \) |
| 83 | \( 1 + (2.11 + 2.11i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.22iT - 89T^{2} \) |
| 97 | \( 1 - 17.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.153010232563323667355607851162, −7.84822772090401808482335091796, −7.58404345802427026385068343888, −6.79134947588014085079284183484, −6.06488636404732300485617164231, −5.26417185025042586705785380250, −4.37728604185744620301319627077, −2.61171670834644337895119431199, −1.94427189439773021816642428216, −0.05896434187712171250393576633,
0.77860626792210101868869407786, 3.39674385171729479759942613094, 3.96964684765214425164335381666, 4.82905373930359089363531344607, 5.45640471164616142270999554530, 6.22164518599770869432767123865, 7.38431157641147399296292010413, 8.358321879313924131492759243898, 9.046877660304638673187159727645, 10.06131678828895738662277289643