L(s) = 1 | + (1.75 + 1.75i)3-s + (0.238 − 0.238i)5-s + 4.31i·7-s + 3.14i·9-s + (−0.431 + 0.431i)11-s + (−2.08 − 2.08i)13-s + 0.837·15-s + 1.32·17-s + (1.72 + 1.72i)19-s + (−7.56 + 7.56i)21-s + i·23-s + 4.88i·25-s + (−0.262 + 0.262i)27-s + (1.03 + 1.03i)29-s + 2.49·31-s + ⋯ |
L(s) = 1 | + (1.01 + 1.01i)3-s + (0.106 − 0.106i)5-s + 1.63i·7-s + 1.04i·9-s + (−0.130 + 0.130i)11-s + (−0.579 − 0.579i)13-s + 0.216·15-s + 0.322·17-s + (0.395 + 0.395i)19-s + (−1.65 + 1.65i)21-s + 0.208i·23-s + 0.977i·25-s + (−0.0505 + 0.0505i)27-s + (0.191 + 0.191i)29-s + 0.447·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.590 - 0.806i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.590 - 0.806i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.195988208\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.195988208\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 - iT \) |
good | 3 | \( 1 + (-1.75 - 1.75i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.238 + 0.238i)T - 5iT^{2} \) |
| 7 | \( 1 - 4.31iT - 7T^{2} \) |
| 11 | \( 1 + (0.431 - 0.431i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.08 + 2.08i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.32T + 17T^{2} \) |
| 19 | \( 1 + (-1.72 - 1.72i)T + 19iT^{2} \) |
| 29 | \( 1 + (-1.03 - 1.03i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.49T + 31T^{2} \) |
| 37 | \( 1 + (8.14 - 8.14i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.419iT - 41T^{2} \) |
| 43 | \( 1 + (-1.04 + 1.04i)T - 43iT^{2} \) |
| 47 | \( 1 + 11.5T + 47T^{2} \) |
| 53 | \( 1 + (-5.54 + 5.54i)T - 53iT^{2} \) |
| 59 | \( 1 + (-5.32 + 5.32i)T - 59iT^{2} \) |
| 61 | \( 1 + (7.62 + 7.62i)T + 61iT^{2} \) |
| 67 | \( 1 + (-8.86 - 8.86i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.26iT - 71T^{2} \) |
| 73 | \( 1 + 15.8iT - 73T^{2} \) |
| 79 | \( 1 + 5.26T + 79T^{2} \) |
| 83 | \( 1 + (-7.33 - 7.33i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.04iT - 89T^{2} \) |
| 97 | \( 1 - 10.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.848192696184366262276796207235, −8.942570174773287805250076266261, −8.459420408674178392789957754239, −7.71040149789434621819642889033, −6.44288666358018859837545713754, −5.28973242688627750270201618673, −4.97036125264661992566246380195, −3.51254253471816372785345622092, −2.95566049960820809950782979066, −1.93418875586443205138949617262,
0.75977095229087800053730657247, 1.93268365466021735138363131156, 2.96419347506929607047054337457, 3.93312043114320887836795147104, 4.87761021402028747052294571052, 6.31699394276020406025341515119, 7.11018967611996116807795290610, 7.47390316655804722642213658806, 8.263612656982579347385843036590, 9.082214415366876281902402135168