L(s) = 1 | − 2.55·3-s + 15.7·5-s − 25.1·7-s − 20.4·9-s − 15.8·11-s − 15.4·13-s − 40.2·15-s + 56.7·17-s + 107.·19-s + 64.4·21-s − 23·23-s + 122.·25-s + 121.·27-s + 267.·29-s + 35.0·31-s + 40.5·33-s − 396.·35-s − 84.9·37-s + 39.6·39-s + 296.·41-s − 353.·43-s − 322.·45-s − 86.6·47-s + 291.·49-s − 145.·51-s + 126.·53-s − 249.·55-s + ⋯ |
L(s) = 1 | − 0.492·3-s + 1.40·5-s − 1.35·7-s − 0.757·9-s − 0.434·11-s − 0.330·13-s − 0.693·15-s + 0.810·17-s + 1.29·19-s + 0.669·21-s − 0.208·23-s + 0.982·25-s + 0.865·27-s + 1.71·29-s + 0.203·31-s + 0.213·33-s − 1.91·35-s − 0.377·37-s + 0.162·39-s + 1.13·41-s − 1.25·43-s − 1.06·45-s − 0.268·47-s + 0.849·49-s − 0.398·51-s + 0.328·53-s − 0.611·55-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1472s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+23T |
good | 3 | 1+2.55T+27T2 |
| 5 | 1−15.7T+125T2 |
| 7 | 1+25.1T+343T2 |
| 11 | 1+15.8T+1.33e3T2 |
| 13 | 1+15.4T+2.19e3T2 |
| 17 | 1−56.7T+4.91e3T2 |
| 19 | 1−107.T+6.85e3T2 |
| 29 | 1−267.T+2.43e4T2 |
| 31 | 1−35.0T+2.97e4T2 |
| 37 | 1+84.9T+5.06e4T2 |
| 41 | 1−296.T+6.89e4T2 |
| 43 | 1+353.T+7.95e4T2 |
| 47 | 1+86.6T+1.03e5T2 |
| 53 | 1−126.T+1.48e5T2 |
| 59 | 1+853.T+2.05e5T2 |
| 61 | 1+647.T+2.26e5T2 |
| 67 | 1+603.T+3.00e5T2 |
| 71 | 1+467.T+3.57e5T2 |
| 73 | 1−301.T+3.89e5T2 |
| 79 | 1−766.T+4.93e5T2 |
| 83 | 1+660.T+5.71e5T2 |
| 89 | 1+1.10e3T+7.04e5T2 |
| 97 | 1+1.49e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.000991389657237037138956752145, −7.915817742651554666104812337060, −6.83544723988830596699057426821, −6.10930266451819008948164600170, −5.64394925923888431050723551809, −4.82555452758901574163683804352, −3.15555996760764495784993465668, −2.72668353865807251308029044285, −1.25033350857530458615822580454, 0,
1.25033350857530458615822580454, 2.72668353865807251308029044285, 3.15555996760764495784993465668, 4.82555452758901574163683804352, 5.64394925923888431050723551809, 6.10930266451819008948164600170, 6.83544723988830596699057426821, 7.915817742651554666104812337060, 9.000991389657237037138956752145