Properties

Label 2-1472-1.1-c3-0-128
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.48·3-s + 7.85·5-s + 7.65·7-s + 3.13·9-s + 2.42·11-s − 62.4·13-s + 43.1·15-s − 117.·17-s + 76.2·19-s + 42.0·21-s − 23·23-s − 63.2·25-s − 131.·27-s − 39.2·29-s − 171.·31-s + 13.3·33-s + 60.1·35-s + 280.·37-s − 342.·39-s − 280.·41-s − 393.·43-s + 24.6·45-s + 467.·47-s − 284.·49-s − 642.·51-s − 253.·53-s + 19.0·55-s + ⋯
L(s)  = 1  + 1.05·3-s + 0.702·5-s + 0.413·7-s + 0.116·9-s + 0.0664·11-s − 1.33·13-s + 0.742·15-s − 1.66·17-s + 0.920·19-s + 0.436·21-s − 0.208·23-s − 0.506·25-s − 0.933·27-s − 0.251·29-s − 0.995·31-s + 0.0702·33-s + 0.290·35-s + 1.24·37-s − 1.40·39-s − 1.06·41-s − 1.39·43-s + 0.0816·45-s + 1.45·47-s − 0.829·49-s − 1.76·51-s − 0.656·53-s + 0.0467·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 - 5.48T + 27T^{2} \)
5 \( 1 - 7.85T + 125T^{2} \)
7 \( 1 - 7.65T + 343T^{2} \)
11 \( 1 - 2.42T + 1.33e3T^{2} \)
13 \( 1 + 62.4T + 2.19e3T^{2} \)
17 \( 1 + 117.T + 4.91e3T^{2} \)
19 \( 1 - 76.2T + 6.85e3T^{2} \)
29 \( 1 + 39.2T + 2.43e4T^{2} \)
31 \( 1 + 171.T + 2.97e4T^{2} \)
37 \( 1 - 280.T + 5.06e4T^{2} \)
41 \( 1 + 280.T + 6.89e4T^{2} \)
43 \( 1 + 393.T + 7.95e4T^{2} \)
47 \( 1 - 467.T + 1.03e5T^{2} \)
53 \( 1 + 253.T + 1.48e5T^{2} \)
59 \( 1 + 850.T + 2.05e5T^{2} \)
61 \( 1 + 176.T + 2.26e5T^{2} \)
67 \( 1 - 684.T + 3.00e5T^{2} \)
71 \( 1 - 1.11e3T + 3.57e5T^{2} \)
73 \( 1 + 510.T + 3.89e5T^{2} \)
79 \( 1 + 535.T + 4.93e5T^{2} \)
83 \( 1 + 323.T + 5.71e5T^{2} \)
89 \( 1 - 327.T + 7.04e5T^{2} \)
97 \( 1 - 1.65e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.864969754372233457840796204721, −7.949974610440991867566653211126, −7.32812802138215114433187846550, −6.33583881540520041636291417471, −5.31951813621714904934739771577, −4.50889868843394077189249043663, −3.35774937188101063063408846775, −2.36628810954434616002290239018, −1.80421188699432600531460994462, 0, 1.80421188699432600531460994462, 2.36628810954434616002290239018, 3.35774937188101063063408846775, 4.50889868843394077189249043663, 5.31951813621714904934739771577, 6.33583881540520041636291417471, 7.32812802138215114433187846550, 7.949974610440991867566653211126, 8.864969754372233457840796204721

Graph of the $Z$-function along the critical line