L(s) = 1 | + 5·3-s + 6·5-s − 8·7-s − 2·9-s − 34·11-s + 57·13-s + 30·15-s − 80·17-s + 70·19-s − 40·21-s + 23·23-s − 89·25-s − 145·27-s − 245·29-s + 103·31-s − 170·33-s − 48·35-s + 298·37-s + 285·39-s + 95·41-s − 88·43-s − 12·45-s − 357·47-s − 279·49-s − 400·51-s + 414·53-s − 204·55-s + ⋯ |
L(s) = 1 | + 0.962·3-s + 0.536·5-s − 0.431·7-s − 0.0740·9-s − 0.931·11-s + 1.21·13-s + 0.516·15-s − 1.14·17-s + 0.845·19-s − 0.415·21-s + 0.208·23-s − 0.711·25-s − 1.03·27-s − 1.56·29-s + 0.596·31-s − 0.896·33-s − 0.231·35-s + 1.32·37-s + 1.17·39-s + 0.361·41-s − 0.312·43-s − 0.0397·45-s − 1.10·47-s − 0.813·49-s − 1.09·51-s + 1.07·53-s − 0.500·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 - p T \) |
good | 3 | \( 1 - 5 T + p^{3} T^{2} \) |
| 5 | \( 1 - 6 T + p^{3} T^{2} \) |
| 7 | \( 1 + 8 T + p^{3} T^{2} \) |
| 11 | \( 1 + 34 T + p^{3} T^{2} \) |
| 13 | \( 1 - 57 T + p^{3} T^{2} \) |
| 17 | \( 1 + 80 T + p^{3} T^{2} \) |
| 19 | \( 1 - 70 T + p^{3} T^{2} \) |
| 29 | \( 1 + 245 T + p^{3} T^{2} \) |
| 31 | \( 1 - 103 T + p^{3} T^{2} \) |
| 37 | \( 1 - 298 T + p^{3} T^{2} \) |
| 41 | \( 1 - 95 T + p^{3} T^{2} \) |
| 43 | \( 1 + 88 T + p^{3} T^{2} \) |
| 47 | \( 1 + 357 T + p^{3} T^{2} \) |
| 53 | \( 1 - 414 T + p^{3} T^{2} \) |
| 59 | \( 1 - 408 T + p^{3} T^{2} \) |
| 61 | \( 1 + 822 T + p^{3} T^{2} \) |
| 67 | \( 1 + 926 T + p^{3} T^{2} \) |
| 71 | \( 1 - 335 T + p^{3} T^{2} \) |
| 73 | \( 1 + 899 T + p^{3} T^{2} \) |
| 79 | \( 1 + 1322 T + p^{3} T^{2} \) |
| 83 | \( 1 - 36 T + p^{3} T^{2} \) |
| 89 | \( 1 + 460 T + p^{3} T^{2} \) |
| 97 | \( 1 + 964 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.788876249294354183927710988854, −8.047375468163031405367381312777, −7.29474836369551728543653654538, −6.14752426239874499050710473682, −5.61023529658559219712714891186, −4.33903202789494036501720708804, −3.32434363589712739954045562743, −2.60927413533643322818380708542, −1.60568297861802847785950716483, 0,
1.60568297861802847785950716483, 2.60927413533643322818380708542, 3.32434363589712739954045562743, 4.33903202789494036501720708804, 5.61023529658559219712714891186, 6.14752426239874499050710473682, 7.29474836369551728543653654538, 8.047375468163031405367381312777, 8.788876249294354183927710988854