L(s) = 1 | + 3.24·3-s + 5.01·5-s − 22.4·7-s − 16.4·9-s + 50.5·11-s + 89.2·13-s + 16.2·15-s − 66.9·17-s − 97.7·19-s − 72.9·21-s − 23·23-s − 99.8·25-s − 141.·27-s − 29.9·29-s − 73.5·31-s + 163.·33-s − 112.·35-s − 1.12·37-s + 289.·39-s + 34.3·41-s + 160.·43-s − 82.7·45-s − 289.·47-s + 162.·49-s − 217.·51-s + 392.·53-s + 253.·55-s + ⋯ |
L(s) = 1 | + 0.624·3-s + 0.448·5-s − 1.21·7-s − 0.610·9-s + 1.38·11-s + 1.90·13-s + 0.280·15-s − 0.954·17-s − 1.17·19-s − 0.757·21-s − 0.208·23-s − 0.798·25-s − 1.00·27-s − 0.192·29-s − 0.426·31-s + 0.864·33-s − 0.545·35-s − 0.00500·37-s + 1.18·39-s + 0.130·41-s + 0.569·43-s − 0.273·45-s − 0.898·47-s + 0.474·49-s − 0.595·51-s + 1.01·53-s + 0.621·55-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1472s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+23T |
good | 3 | 1−3.24T+27T2 |
| 5 | 1−5.01T+125T2 |
| 7 | 1+22.4T+343T2 |
| 11 | 1−50.5T+1.33e3T2 |
| 13 | 1−89.2T+2.19e3T2 |
| 17 | 1+66.9T+4.91e3T2 |
| 19 | 1+97.7T+6.85e3T2 |
| 29 | 1+29.9T+2.43e4T2 |
| 31 | 1+73.5T+2.97e4T2 |
| 37 | 1+1.12T+5.06e4T2 |
| 41 | 1−34.3T+6.89e4T2 |
| 43 | 1−160.T+7.95e4T2 |
| 47 | 1+289.T+1.03e5T2 |
| 53 | 1−392.T+1.48e5T2 |
| 59 | 1−174.T+2.05e5T2 |
| 61 | 1−474.T+2.26e5T2 |
| 67 | 1+671.T+3.00e5T2 |
| 71 | 1−481.T+3.57e5T2 |
| 73 | 1+778.T+3.89e5T2 |
| 79 | 1−132.T+4.93e5T2 |
| 83 | 1+808.T+5.71e5T2 |
| 89 | 1+1.05e3T+7.04e5T2 |
| 97 | 1−824.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.887195605291232101115516767968, −8.249958545733039998493398311219, −6.87306210111826920794933608549, −6.25756508616341477133847366171, −5.80388754757634618470750470647, −4.03630209144009521237940898566, −3.67598911253509922370088794556, −2.54145687691683855120552076672, −1.49183817081434813619177605511, 0,
1.49183817081434813619177605511, 2.54145687691683855120552076672, 3.67598911253509922370088794556, 4.03630209144009521237940898566, 5.80388754757634618470750470647, 6.25756508616341477133847366171, 6.87306210111826920794933608549, 8.249958545733039998493398311219, 8.887195605291232101115516767968