Properties

Label 2-1472-1.1-c1-0-36
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s − 2.73·5-s − 1.26·7-s + 4.73·11-s − 0.464·13-s − 4.73·15-s − 6.19·17-s − 3.46·19-s − 2.19·21-s + 23-s + 2.46·25-s − 5.19·27-s − 1.53·29-s − 7.73·31-s + 8.19·33-s + 3.46·35-s + 4.19·37-s − 0.803·39-s − 8.46·41-s + 6.92·43-s − 0.803·47-s − 5.39·49-s − 10.7·51-s + 4.92·53-s − 12.9·55-s − 5.99·57-s + 2.53·59-s + ⋯
L(s)  = 1  + 1.00·3-s − 1.22·5-s − 0.479·7-s + 1.42·11-s − 0.128·13-s − 1.22·15-s − 1.50·17-s − 0.794·19-s − 0.479·21-s + 0.208·23-s + 0.492·25-s − 1.00·27-s − 0.285·29-s − 1.38·31-s + 1.42·33-s + 0.585·35-s + 0.689·37-s − 0.128·39-s − 1.32·41-s + 1.05·43-s − 0.117·47-s − 0.770·49-s − 1.50·51-s + 0.676·53-s − 1.74·55-s − 0.794·57-s + 0.330·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - 1.73T + 3T^{2} \)
5 \( 1 + 2.73T + 5T^{2} \)
7 \( 1 + 1.26T + 7T^{2} \)
11 \( 1 - 4.73T + 11T^{2} \)
13 \( 1 + 0.464T + 13T^{2} \)
17 \( 1 + 6.19T + 17T^{2} \)
19 \( 1 + 3.46T + 19T^{2} \)
29 \( 1 + 1.53T + 29T^{2} \)
31 \( 1 + 7.73T + 31T^{2} \)
37 \( 1 - 4.19T + 37T^{2} \)
41 \( 1 + 8.46T + 41T^{2} \)
43 \( 1 - 6.92T + 43T^{2} \)
47 \( 1 + 0.803T + 47T^{2} \)
53 \( 1 - 4.92T + 53T^{2} \)
59 \( 1 - 2.53T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 14.1T + 67T^{2} \)
71 \( 1 + 13.7T + 71T^{2} \)
73 \( 1 - 6.46T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 + 8.19T + 83T^{2} \)
89 \( 1 - 17.8T + 89T^{2} \)
97 \( 1 + 4.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.902392897103418166155764373371, −8.534308042722768650807752273208, −7.52157927395237607189808932128, −6.88478406047734086928963328815, −5.98948369187569748728520525295, −4.44028217898655617968492804102, −3.89867540204955331422701762284, −3.10160616384275556303044185155, −1.91543091146839422241320425220, 0, 1.91543091146839422241320425220, 3.10160616384275556303044185155, 3.89867540204955331422701762284, 4.44028217898655617968492804102, 5.98948369187569748728520525295, 6.88478406047734086928963328815, 7.52157927395237607189808932128, 8.534308042722768650807752273208, 8.902392897103418166155764373371

Graph of the $Z$-function along the critical line