Properties

Label 2-1472-1.1-c1-0-32
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.34·3-s + 1.14·5-s + 1.14·7-s + 8.17·9-s + 3.14·11-s − 2.48·13-s + 3.83·15-s + 0.853·17-s − 5.66·19-s + 3.83·21-s − 23-s − 3.68·25-s + 17.3·27-s + 6.88·29-s − 8.32·31-s + 10.5·33-s + 1.31·35-s − 8.81·37-s − 8.32·39-s − 6.48·41-s − 2.97·43-s + 9.37·45-s − 2.94·47-s − 5.68·49-s + 2.85·51-s − 0.393·53-s + 3.60·55-s + ⋯
L(s)  = 1  + 1.93·3-s + 0.512·5-s + 0.433·7-s + 2.72·9-s + 0.948·11-s − 0.690·13-s + 0.989·15-s + 0.207·17-s − 1.29·19-s + 0.836·21-s − 0.208·23-s − 0.737·25-s + 3.32·27-s + 1.27·29-s − 1.49·31-s + 1.83·33-s + 0.222·35-s − 1.44·37-s − 1.33·39-s − 1.01·41-s − 0.454·43-s + 1.39·45-s − 0.430·47-s − 0.812·49-s + 0.399·51-s − 0.0539·53-s + 0.486·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.877973613\)
\(L(\frac12)\) \(\approx\) \(3.877973613\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - 3.34T + 3T^{2} \)
5 \( 1 - 1.14T + 5T^{2} \)
7 \( 1 - 1.14T + 7T^{2} \)
11 \( 1 - 3.14T + 11T^{2} \)
13 \( 1 + 2.48T + 13T^{2} \)
17 \( 1 - 0.853T + 17T^{2} \)
19 \( 1 + 5.66T + 19T^{2} \)
29 \( 1 - 6.88T + 29T^{2} \)
31 \( 1 + 8.32T + 31T^{2} \)
37 \( 1 + 8.81T + 37T^{2} \)
41 \( 1 + 6.48T + 41T^{2} \)
43 \( 1 + 2.97T + 43T^{2} \)
47 \( 1 + 2.94T + 47T^{2} \)
53 \( 1 + 0.393T + 53T^{2} \)
59 \( 1 - 5.70T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 - 7.93T + 67T^{2} \)
71 \( 1 - 0.657T + 71T^{2} \)
73 \( 1 + 1.90T + 73T^{2} \)
79 \( 1 - 16.0T + 79T^{2} \)
83 \( 1 - 2.75T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 + 14.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527797880433413909163086220228, −8.430280496766763240640929316332, −8.364637463000228617112770231894, −7.14275707270821220477130579038, −6.61309204512291809269462430175, −5.14033576708128683753128331099, −4.13751074359040693620993803540, −3.42465790958754342122205438735, −2.23135587521520862535347928264, −1.66894936726235054466756279882, 1.66894936726235054466756279882, 2.23135587521520862535347928264, 3.42465790958754342122205438735, 4.13751074359040693620993803540, 5.14033576708128683753128331099, 6.61309204512291809269462430175, 7.14275707270821220477130579038, 8.364637463000228617112770231894, 8.430280496766763240640929316332, 9.527797880433413909163086220228

Graph of the $Z$-function along the critical line