L(s) = 1 | + 3.34·3-s + 1.14·5-s + 1.14·7-s + 8.17·9-s + 3.14·11-s − 2.48·13-s + 3.83·15-s + 0.853·17-s − 5.66·19-s + 3.83·21-s − 23-s − 3.68·25-s + 17.3·27-s + 6.88·29-s − 8.32·31-s + 10.5·33-s + 1.31·35-s − 8.81·37-s − 8.32·39-s − 6.48·41-s − 2.97·43-s + 9.37·45-s − 2.94·47-s − 5.68·49-s + 2.85·51-s − 0.393·53-s + 3.60·55-s + ⋯ |
L(s) = 1 | + 1.93·3-s + 0.512·5-s + 0.433·7-s + 2.72·9-s + 0.948·11-s − 0.690·13-s + 0.989·15-s + 0.207·17-s − 1.29·19-s + 0.836·21-s − 0.208·23-s − 0.737·25-s + 3.32·27-s + 1.27·29-s − 1.49·31-s + 1.83·33-s + 0.222·35-s − 1.44·37-s − 1.33·39-s − 1.01·41-s − 0.454·43-s + 1.39·45-s − 0.430·47-s − 0.812·49-s + 0.399·51-s − 0.0539·53-s + 0.486·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.877973613\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.877973613\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 - 3.34T + 3T^{2} \) |
| 5 | \( 1 - 1.14T + 5T^{2} \) |
| 7 | \( 1 - 1.14T + 7T^{2} \) |
| 11 | \( 1 - 3.14T + 11T^{2} \) |
| 13 | \( 1 + 2.48T + 13T^{2} \) |
| 17 | \( 1 - 0.853T + 17T^{2} \) |
| 19 | \( 1 + 5.66T + 19T^{2} \) |
| 29 | \( 1 - 6.88T + 29T^{2} \) |
| 31 | \( 1 + 8.32T + 31T^{2} \) |
| 37 | \( 1 + 8.81T + 37T^{2} \) |
| 41 | \( 1 + 6.48T + 41T^{2} \) |
| 43 | \( 1 + 2.97T + 43T^{2} \) |
| 47 | \( 1 + 2.94T + 47T^{2} \) |
| 53 | \( 1 + 0.393T + 53T^{2} \) |
| 59 | \( 1 - 5.70T + 59T^{2} \) |
| 61 | \( 1 - 14.3T + 61T^{2} \) |
| 67 | \( 1 - 7.93T + 67T^{2} \) |
| 71 | \( 1 - 0.657T + 71T^{2} \) |
| 73 | \( 1 + 1.90T + 73T^{2} \) |
| 79 | \( 1 - 16.0T + 79T^{2} \) |
| 83 | \( 1 - 2.75T + 83T^{2} \) |
| 89 | \( 1 + 15.7T + 89T^{2} \) |
| 97 | \( 1 + 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.527797880433413909163086220228, −8.430280496766763240640929316332, −8.364637463000228617112770231894, −7.14275707270821220477130579038, −6.61309204512291809269462430175, −5.14033576708128683753128331099, −4.13751074359040693620993803540, −3.42465790958754342122205438735, −2.23135587521520862535347928264, −1.66894936726235054466756279882,
1.66894936726235054466756279882, 2.23135587521520862535347928264, 3.42465790958754342122205438735, 4.13751074359040693620993803540, 5.14033576708128683753128331099, 6.61309204512291809269462430175, 7.14275707270821220477130579038, 8.364637463000228617112770231894, 8.430280496766763240640929316332, 9.527797880433413909163086220228