Properties

Label 2-1472-1.1-c1-0-29
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41·3-s + 3.41·5-s − 3.41·7-s + 2.82·9-s + 4.24·11-s − 1.82·13-s − 8.24·15-s − 5.41·17-s − 4.82·19-s + 8.24·21-s − 23-s + 6.65·25-s + 0.414·27-s + 5·29-s − 0.757·31-s − 10.2·33-s − 11.6·35-s + 9.07·37-s + 4.41·39-s − 12.6·41-s − 4·43-s + 9.65·45-s + 3.24·47-s + 4.65·49-s + 13.0·51-s − 13.3·53-s + 14.4·55-s + ⋯
L(s)  = 1  − 1.39·3-s + 1.52·5-s − 1.29·7-s + 0.942·9-s + 1.27·11-s − 0.507·13-s − 2.12·15-s − 1.31·17-s − 1.10·19-s + 1.79·21-s − 0.208·23-s + 1.33·25-s + 0.0797·27-s + 0.928·29-s − 0.136·31-s − 1.78·33-s − 1.97·35-s + 1.49·37-s + 0.706·39-s − 1.97·41-s − 0.609·43-s + 1.43·45-s + 0.472·47-s + 0.665·49-s + 1.83·51-s − 1.82·53-s + 1.95·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2.41T + 3T^{2} \)
5 \( 1 - 3.41T + 5T^{2} \)
7 \( 1 + 3.41T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 + 1.82T + 13T^{2} \)
17 \( 1 + 5.41T + 17T^{2} \)
19 \( 1 + 4.82T + 19T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 + 0.757T + 31T^{2} \)
37 \( 1 - 9.07T + 37T^{2} \)
41 \( 1 + 12.6T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 3.24T + 47T^{2} \)
53 \( 1 + 13.3T + 53T^{2} \)
59 \( 1 + 6.82T + 59T^{2} \)
61 \( 1 + 7.65T + 61T^{2} \)
67 \( 1 - 5.89T + 67T^{2} \)
71 \( 1 - 6.41T + 71T^{2} \)
73 \( 1 - 2.17T + 73T^{2} \)
79 \( 1 - 2.48T + 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 + 8T + 89T^{2} \)
97 \( 1 + 9.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456159427590212657315575217927, −8.567465982923886792483285895032, −6.79934804240066478870929483094, −6.43662045629618641279198563567, −6.15217878295515502687569788355, −5.08648939719730197012115311983, −4.22843299771050632436970299366, −2.76417225677206653802405433818, −1.57599364917149848294130471831, 0, 1.57599364917149848294130471831, 2.76417225677206653802405433818, 4.22843299771050632436970299366, 5.08648939719730197012115311983, 6.15217878295515502687569788355, 6.43662045629618641279198563567, 6.79934804240066478870929483094, 8.567465982923886792483285895032, 9.456159427590212657315575217927

Graph of the $Z$-function along the critical line