Properties

Label 2-1472-1.1-c1-0-13
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.12·3-s − 4.35·5-s − 2.65·7-s + 6.78·9-s + 2.35·11-s + 3.78·13-s + 13.6·15-s − 0.656·17-s − 0.301·19-s + 8.30·21-s − 23-s + 13.9·25-s − 11.8·27-s + 8.49·29-s − 6.52·31-s − 7.36·33-s + 11.5·35-s − 4.35·37-s − 11.8·39-s + 3.07·41-s − 1.44·43-s − 29.5·45-s − 3.73·47-s + 0.0569·49-s + 2.05·51-s + 3.95·53-s − 10.2·55-s + ⋯
L(s)  = 1  − 1.80·3-s − 1.94·5-s − 1.00·7-s + 2.26·9-s + 0.710·11-s + 1.04·13-s + 3.51·15-s − 0.159·17-s − 0.0691·19-s + 1.81·21-s − 0.208·23-s + 2.79·25-s − 2.27·27-s + 1.57·29-s − 1.17·31-s − 1.28·33-s + 1.95·35-s − 0.715·37-s − 1.89·39-s + 0.480·41-s − 0.219·43-s − 4.40·45-s − 0.544·47-s + 0.00813·49-s + 0.287·51-s + 0.543·53-s − 1.38·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 3.12T + 3T^{2} \)
5 \( 1 + 4.35T + 5T^{2} \)
7 \( 1 + 2.65T + 7T^{2} \)
11 \( 1 - 2.35T + 11T^{2} \)
13 \( 1 - 3.78T + 13T^{2} \)
17 \( 1 + 0.656T + 17T^{2} \)
19 \( 1 + 0.301T + 19T^{2} \)
29 \( 1 - 8.49T + 29T^{2} \)
31 \( 1 + 6.52T + 31T^{2} \)
37 \( 1 + 4.35T + 37T^{2} \)
41 \( 1 - 3.07T + 41T^{2} \)
43 \( 1 + 1.44T + 43T^{2} \)
47 \( 1 + 3.73T + 47T^{2} \)
53 \( 1 - 3.95T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 + 7.95T + 61T^{2} \)
67 \( 1 + 7.66T + 67T^{2} \)
71 \( 1 - 13.1T + 71T^{2} \)
73 \( 1 + 5.33T + 73T^{2} \)
79 \( 1 + 6.85T + 79T^{2} \)
83 \( 1 + 8.61T + 83T^{2} \)
89 \( 1 - 13.5T + 89T^{2} \)
97 \( 1 - 7.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.089656471296716627366672261467, −8.218289360123769212460141085132, −7.12928257777021937021961588579, −6.69483992307089531509821634898, −5.95268102392831690777292298902, −4.83201250988021360528096408598, −4.04208667656312675768603756926, −3.41118714809898646699101042187, −1.02529422266639782207701387374, 0, 1.02529422266639782207701387374, 3.41118714809898646699101042187, 4.04208667656312675768603756926, 4.83201250988021360528096408598, 5.95268102392831690777292298902, 6.69483992307089531509821634898, 7.12928257777021937021961588579, 8.218289360123769212460141085132, 9.089656471296716627366672261467

Graph of the $Z$-function along the critical line