L(s) = 1 | − 2·2-s − 3·3-s + 4·4-s − 5·5-s + 6·6-s − 8·8-s + 9·9-s + 10·10-s − 60·11-s − 12·12-s + 34·13-s + 15·15-s + 16·16-s − 42·17-s − 18·18-s + 76·19-s − 20·20-s + 120·22-s + 24·24-s + 25·25-s − 68·26-s − 27·27-s + 6·29-s − 30·30-s + 232·31-s − 32·32-s + 180·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.64·11-s − 0.288·12-s + 0.725·13-s + 0.258·15-s + 1/4·16-s − 0.599·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 1.16·22-s + 0.204·24-s + 1/5·25-s − 0.512·26-s − 0.192·27-s + 0.0384·29-s − 0.182·30-s + 1.34·31-s − 0.176·32-s + 0.949·33-s + ⋯ |
Λ(s)=(=(1470s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1470s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+pT |
| 3 | 1+pT |
| 5 | 1+pT |
| 7 | 1 |
good | 11 | 1+60T+p3T2 |
| 13 | 1−34T+p3T2 |
| 17 | 1+42T+p3T2 |
| 19 | 1−4pT+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1−6T+p3T2 |
| 31 | 1−232T+p3T2 |
| 37 | 1−134T+p3T2 |
| 41 | 1+234T+p3T2 |
| 43 | 1+412T+p3T2 |
| 47 | 1−360T+p3T2 |
| 53 | 1−222T+p3T2 |
| 59 | 1+660T+p3T2 |
| 61 | 1−490T+p3T2 |
| 67 | 1−812T+p3T2 |
| 71 | 1−120T+p3T2 |
| 73 | 1+746T+p3T2 |
| 79 | 1−152T+p3T2 |
| 83 | 1−804T+p3T2 |
| 89 | 1−678T+p3T2 |
| 97 | 1+2pT+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.566133886179145134429702390746, −8.020551828485846304147671354679, −7.23660053773631076587518781272, −6.39873574360615936342878832728, −5.46861604953167102930755625526, −4.67623525466600912610991708404, −3.40459617486998974543510152713, −2.38550360697533715404005323816, −1.00941817969652548790483069606, 0,
1.00941817969652548790483069606, 2.38550360697533715404005323816, 3.40459617486998974543510152713, 4.67623525466600912610991708404, 5.46861604953167102930755625526, 6.39873574360615936342878832728, 7.23660053773631076587518781272, 8.020551828485846304147671354679, 8.566133886179145134429702390746