Properties

Label 2-1470-1.1-c3-0-42
Degree $2$
Conductor $1470$
Sign $-1$
Analytic cond. $86.7328$
Root an. cond. $9.31304$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s − 5·5-s + 6·6-s − 8·8-s + 9·9-s + 10·10-s − 60·11-s − 12·12-s + 34·13-s + 15·15-s + 16·16-s − 42·17-s − 18·18-s + 76·19-s − 20·20-s + 120·22-s + 24·24-s + 25·25-s − 68·26-s − 27·27-s + 6·29-s − 30·30-s + 232·31-s − 32·32-s + 180·33-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.64·11-s − 0.288·12-s + 0.725·13-s + 0.258·15-s + 1/4·16-s − 0.599·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 1.16·22-s + 0.204·24-s + 1/5·25-s − 0.512·26-s − 0.192·27-s + 0.0384·29-s − 0.182·30-s + 1.34·31-s − 0.176·32-s + 0.949·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(86.7328\)
Root analytic conductor: \(9.31304\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1470,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 + p T \)
5 \( 1 + p T \)
7 \( 1 \)
good11 \( 1 + 60 T + p^{3} T^{2} \)
13 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 - 4 p T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 6 T + p^{3} T^{2} \)
31 \( 1 - 232 T + p^{3} T^{2} \)
37 \( 1 - 134 T + p^{3} T^{2} \)
41 \( 1 + 234 T + p^{3} T^{2} \)
43 \( 1 + 412 T + p^{3} T^{2} \)
47 \( 1 - 360 T + p^{3} T^{2} \)
53 \( 1 - 222 T + p^{3} T^{2} \)
59 \( 1 + 660 T + p^{3} T^{2} \)
61 \( 1 - 490 T + p^{3} T^{2} \)
67 \( 1 - 812 T + p^{3} T^{2} \)
71 \( 1 - 120 T + p^{3} T^{2} \)
73 \( 1 + 746 T + p^{3} T^{2} \)
79 \( 1 - 152 T + p^{3} T^{2} \)
83 \( 1 - 804 T + p^{3} T^{2} \)
89 \( 1 - 678 T + p^{3} T^{2} \)
97 \( 1 + 2 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.566133886179145134429702390746, −8.020551828485846304147671354679, −7.23660053773631076587518781272, −6.39873574360615936342878832728, −5.46861604953167102930755625526, −4.67623525466600912610991708404, −3.40459617486998974543510152713, −2.38550360697533715404005323816, −1.00941817969652548790483069606, 0, 1.00941817969652548790483069606, 2.38550360697533715404005323816, 3.40459617486998974543510152713, 4.67623525466600912610991708404, 5.46861604953167102930755625526, 6.39873574360615936342878832728, 7.23660053773631076587518781272, 8.020551828485846304147671354679, 8.566133886179145134429702390746

Graph of the $Z$-function along the critical line