L(s) = 1 | + (0.395 + 0.684i)2-s + (4.5 − 7.79i)3-s + (15.6 − 27.1i)4-s + (−52.0 − 90.2i)5-s + 7.11·6-s + 50.1·8-s + (−40.5 − 70.1i)9-s + (41.1 − 71.3i)10-s + (248. − 430. i)11-s + (−141. − 244. i)12-s + 206.·13-s − 937.·15-s + (−482. − 835. i)16-s + (31.5 − 54.6i)17-s + (32.0 − 55.4i)18-s + (661. + 1.14e3i)19-s + ⋯ |
L(s) = 1 | + (0.0698 + 0.121i)2-s + (0.288 − 0.499i)3-s + (0.490 − 0.849i)4-s + (−0.931 − 1.61i)5-s + 0.0807·6-s + 0.276·8-s + (−0.166 − 0.288i)9-s + (0.130 − 0.225i)10-s + (0.620 − 1.07i)11-s + (−0.283 − 0.490i)12-s + 0.338·13-s − 1.07·15-s + (−0.470 − 0.815i)16-s + (0.0265 − 0.0459i)17-s + (0.0232 − 0.0403i)18-s + (0.420 + 0.728i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.991+0.126i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.991+0.126i)
|
Particular Values
L(3) |
≈ |
1.867406822 |
L(21) |
≈ |
1.867406822 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 2 | 1+(−0.395−0.684i)T+(−16+27.7i)T2 |
| 5 | 1+(52.0+90.2i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−248.+430.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−206.T+3.71e5T2 |
| 17 | 1+(−31.5+54.6i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−661.−1.14e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−97.2−168.i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−4.32e3T+2.05e7T2 |
| 31 | 1+(3.76e3−6.51e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(5.17e3+8.96e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−4.18e3T+1.15e8T2 |
| 43 | 1−5.96e3T+1.47e8T2 |
| 47 | 1+(2.19e3+3.80e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(8.89e3−1.54e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−1.75e3+3.03e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(5.31e3+9.20e3i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−6.63e3+1.14e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−3.88e4T+1.80e9T2 |
| 73 | 1+(−1.56e4+2.71e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(1.97e4+3.42e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−1.02e5T+3.93e9T2 |
| 89 | 1+(5.64e4+9.77e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+3.03e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.83343391490364981000777639055, −10.84726101585602912697721895784, −9.271989989653898454165823910815, −8.529685605599663516265393905571, −7.48700538365522744423094121686, −6.10877602407146541108154319102, −5.05307791406769457207849168895, −3.61824299976399470164633089295, −1.46994270815991637902921007129, −0.62445258124539311716451783425,
2.41655969477833661649222774965, 3.42385713808556408189656861097, 4.31752645131620556006845878574, 6.58840893187143643147768595301, 7.29185791633888445297380321127, 8.233168868560332888258640586218, 9.716120420431017603440657761599, 10.85194713320570252959714424415, 11.47909389830708197241721965089, 12.34338230244581497594595244782