L(s) = 1 | + (3 + 5.19i)2-s + (4.5 − 7.79i)3-s + (−2 + 3.46i)4-s + (−39 − 67.5i)5-s + 54·6-s + 168·8-s + (−40.5 − 70.1i)9-s + (234 − 405. i)10-s + (−222 + 384. i)11-s + (18.0 + 31.1i)12-s − 442·13-s − 702·15-s + (568 + 983. i)16-s + (63 − 109. i)17-s + (243 − 420. i)18-s + (−1.34e3 − 2.32e3i)19-s + ⋯ |
L(s) = 1 | + (0.530 + 0.918i)2-s + (0.288 − 0.499i)3-s + (−0.0625 + 0.108i)4-s + (−0.697 − 1.20i)5-s + 0.612·6-s + 0.928·8-s + (−0.166 − 0.288i)9-s + (0.739 − 1.28i)10-s + (−0.553 + 0.958i)11-s + (0.0360 + 0.0625i)12-s − 0.725·13-s − 0.805·15-s + (0.554 + 0.960i)16-s + (0.0528 − 0.0915i)17-s + (0.176 − 0.306i)18-s + (−0.852 − 1.47i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.386+0.922i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.386+0.922i)
|
Particular Values
L(3) |
≈ |
1.461101261 |
L(21) |
≈ |
1.461101261 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 2 | 1+(−3−5.19i)T+(−16+27.7i)T2 |
| 5 | 1+(39+67.5i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(222−384.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+442T+3.71e5T2 |
| 17 | 1+(−63+109.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(1.34e3+2.32e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(2.10e3+3.63e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+5.44e3T+2.05e7T2 |
| 31 | 1+(40−69.2i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−2.71e3−4.70e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−7.96e3T+1.15e8T2 |
| 43 | 1+1.15e4T+1.47e8T2 |
| 47 | 1+(−6.96e3−1.20e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−4.79e3+8.30e3i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.37e4−2.38e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(2.47e4+4.28e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−2.96e4+5.14e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−3.20e4T+1.80e9T2 |
| 73 | 1+(−3.09e4+5.35e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−3.28e4−5.69e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−4.01e4T+3.93e9T2 |
| 89 | 1+(−3.98e3−6.90e3i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+1.43e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37267942221707701866710971737, −10.92813965320586952857455138305, −9.504787738818300343770048651040, −8.268769414663246479157885117185, −7.52306568955418276409634218132, −6.50131624677641011352285160093, −5.00084021470008397935389571515, −4.39714423639403199621530903871, −2.12192349625375215475327525950, −0.37103823368060179196664231475,
2.18573393359572254728069463825, 3.35684217607051297998196800219, 3.97110970669868766338939510135, 5.67061899817867306119845861452, 7.37058665093314473129618239347, 8.110807781561089577122431050035, 9.866477786776292022879285271579, 10.70787242846637690066120869274, 11.33722347091717048290249089610, 12.25735097790308652579408349638