L(s) = 1 | + (−1.37 − 2.37i)2-s + (4.5 − 7.79i)3-s + (12.2 − 21.1i)4-s + (29.1 + 50.5i)5-s − 24.7·6-s − 155.·8-s + (−40.5 − 70.1i)9-s + (80.2 − 138. i)10-s + (−8.71 + 15.0i)11-s + (−110. − 190. i)12-s − 889.·13-s + 525.·15-s + (−178. − 308. i)16-s + (513. − 889. i)17-s + (−111. + 192. i)18-s + (−869. − 1.50e3i)19-s + ⋯ |
L(s) = 1 | + (−0.242 − 0.420i)2-s + (0.288 − 0.499i)3-s + (0.381 − 0.661i)4-s + (0.522 + 0.904i)5-s − 0.280·6-s − 0.856·8-s + (−0.166 − 0.288i)9-s + (0.253 − 0.439i)10-s + (−0.0217 + 0.0376i)11-s + (−0.220 − 0.381i)12-s − 1.46·13-s + 0.602·15-s + (−0.173 − 0.301i)16-s + (0.430 − 0.746i)17-s + (−0.0809 + 0.140i)18-s + (−0.552 − 0.957i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.991+0.126i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.991+0.126i)
|
Particular Values
L(3) |
≈ |
1.226351768 |
L(21) |
≈ |
1.226351768 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 2 | 1+(1.37+2.37i)T+(−16+27.7i)T2 |
| 5 | 1+(−29.1−50.5i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(8.71−15.0i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+889.T+3.71e5T2 |
| 17 | 1+(−513.+889.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(869.+1.50e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(1.96e3+3.40e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−5.63e3T+2.05e7T2 |
| 31 | 1+(1.54e3−2.68e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(2.51e3+4.35e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+1.83e4T+1.15e8T2 |
| 43 | 1+1.63e3T+1.47e8T2 |
| 47 | 1+(4.80e3+8.31e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.16e4+2.01e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.80e3−3.12e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−1.14e4−1.98e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(2.35e4−4.07e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+1.59e3T+1.80e9T2 |
| 73 | 1+(−2.96e3+5.13e3i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−4.42e4−7.66e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−9.58e4T+3.93e9T2 |
| 89 | 1+(2.32e4+4.02e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−7.59e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65795208804143195692399580628, −10.39754567553760308304574113805, −9.948875825113031802585893931943, −8.669227509482487410975891443721, −7.07690440206091156886222192034, −6.51151774398990261191186259113, −5.06574526085432483642138370971, −2.81465718732409702506243497772, −2.15694558860676772556769789913, −0.38892228681373068113390755483,
1.93027652560405659351694265794, 3.48683772359282345589540075745, 4.92712954383861458374969040833, 6.13261458695421887491243551211, 7.61166578529036843484819667717, 8.403104705221070633884655646624, 9.439625051052719463334890828476, 10.28450796188846584782869603393, 11.89523144101434572779430449204, 12.49202621023790703216079888887