Properties

Label 2-147-7.4-c5-0-22
Degree 22
Conductor 147147
Sign 0.386+0.922i-0.386 + 0.922i
Analytic cond. 23.576423.5764
Root an. cond. 4.855554.85555
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (4.5 − 7.79i)3-s + (15.5 − 26.8i)4-s + (17 + 29.4i)5-s − 9·6-s − 63·8-s + (−40.5 − 70.1i)9-s + (16.9 − 29.4i)10-s + (170 − 294. i)11-s + (−139.5 − 241. i)12-s + 454·13-s + 306·15-s + (−464.5 − 804. i)16-s + (399 − 691. i)17-s + (−40.5 + 70.1i)18-s + (−446 − 772. i)19-s + ⋯
L(s)  = 1  + (−0.0883 − 0.153i)2-s + (0.288 − 0.499i)3-s + (0.484 − 0.838i)4-s + (0.304 + 0.526i)5-s − 0.102·6-s − 0.348·8-s + (−0.166 − 0.288i)9-s + (0.0537 − 0.0931i)10-s + (0.423 − 0.733i)11-s + (−0.279 − 0.484i)12-s + 0.745·13-s + 0.351·15-s + (−0.453 − 0.785i)16-s + (0.334 − 0.579i)17-s + (−0.0294 + 0.0510i)18-s + (−0.283 − 0.490i)19-s + ⋯

Functional equation

Λ(s)=(147s/2ΓC(s)L(s)=((0.386+0.922i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(147s/2ΓC(s+5/2)L(s)=((0.386+0.922i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 147147    =    3723 \cdot 7^{2}
Sign: 0.386+0.922i-0.386 + 0.922i
Analytic conductor: 23.576423.5764
Root analytic conductor: 4.855554.85555
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ147(67,)\chi_{147} (67, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 147, ( :5/2), 0.386+0.922i)(2,\ 147,\ (\ :5/2),\ -0.386 + 0.922i)

Particular Values

L(3)L(3) \approx 2.2661848862.266184886
L(12)L(\frac12) \approx 2.2661848862.266184886
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(4.5+7.79i)T 1 + (-4.5 + 7.79i)T
7 1 1
good2 1+(0.5+0.866i)T+(16+27.7i)T2 1 + (0.5 + 0.866i)T + (-16 + 27.7i)T^{2}
5 1+(1729.4i)T+(1.56e3+2.70e3i)T2 1 + (-17 - 29.4i)T + (-1.56e3 + 2.70e3i)T^{2}
11 1+(170+294.i)T+(8.05e41.39e5i)T2 1 + (-170 + 294. i)T + (-8.05e4 - 1.39e5i)T^{2}
13 1454T+3.71e5T2 1 - 454T + 3.71e5T^{2}
17 1+(399+691.i)T+(7.09e51.22e6i)T2 1 + (-399 + 691. i)T + (-7.09e5 - 1.22e6i)T^{2}
19 1+(446+772.i)T+(1.23e6+2.14e6i)T2 1 + (446 + 772. i)T + (-1.23e6 + 2.14e6i)T^{2}
23 1+(1.59e32.76e3i)T+(3.21e6+5.57e6i)T2 1 + (-1.59e3 - 2.76e3i)T + (-3.21e6 + 5.57e6i)T^{2}
29 1+8.24e3T+2.05e7T2 1 + 8.24e3T + 2.05e7T^{2}
31 1+(1.24e3+2.16e3i)T+(1.43e72.47e7i)T2 1 + (-1.24e3 + 2.16e3i)T + (-1.43e7 - 2.47e7i)T^{2}
37 1+(4.89e3+8.48e3i)T+(3.46e7+6.00e7i)T2 1 + (4.89e3 + 8.48e3i)T + (-3.46e7 + 6.00e7i)T^{2}
41 11.98e4T+1.15e8T2 1 - 1.98e4T + 1.15e8T^{2}
43 1+1.72e4T+1.47e8T2 1 + 1.72e4T + 1.47e8T^{2}
47 1+(4.46e3+7.73e3i)T+(1.14e8+1.98e8i)T2 1 + (4.46e3 + 7.73e3i)T + (-1.14e8 + 1.98e8i)T^{2}
53 1+(75129.i)T+(2.09e83.62e8i)T2 1 + (75 - 129. i)T + (-2.09e8 - 3.62e8i)T^{2}
59 1+(2.11e4+3.67e4i)T+(3.57e86.19e8i)T2 1 + (-2.11e4 + 3.67e4i)T + (-3.57e8 - 6.19e8i)T^{2}
61 1+(7.37e3+1.27e4i)T+(4.22e8+7.31e8i)T2 1 + (7.37e3 + 1.27e4i)T + (-4.22e8 + 7.31e8i)T^{2}
67 1+(838+1.45e3i)T+(6.75e81.16e9i)T2 1 + (-838 + 1.45e3i)T + (-6.75e8 - 1.16e9i)T^{2}
71 11.45e4T+1.80e9T2 1 - 1.45e4T + 1.80e9T^{2}
73 1+(3.91e46.78e4i)T+(1.03e91.79e9i)T2 1 + (3.91e4 - 6.78e4i)T + (-1.03e9 - 1.79e9i)T^{2}
79 1+(1.13e31.96e3i)T+(1.53e9+2.66e9i)T2 1 + (-1.13e3 - 1.96e3i)T + (-1.53e9 + 2.66e9i)T^{2}
83 1+3.77e4T+3.93e9T2 1 + 3.77e4T + 3.93e9T^{2}
89 1+(5.86e41.01e5i)T+(2.79e9+4.83e9i)T2 1 + (-5.86e4 - 1.01e5i)T + (-2.79e9 + 4.83e9i)T^{2}
97 11.00e4T+8.58e9T2 1 - 1.00e4T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.46185058634540938349271985442, −11.04683385692800014174231081683, −9.759684604346111563874226656577, −8.859782024463065321493213918077, −7.37102860987291776611890731681, −6.41132485697829752175078152583, −5.49693741508349489769407815924, −3.40301642306557464678778925580, −2.08247390718390313233196119436, −0.76667496425119150520312119182, 1.71804856053153784102608933785, 3.30980044719199808460636837565, 4.45789763170981101844147039679, 5.99840586250065689225929036539, 7.25496542246421484664806699073, 8.429342519160791736982855892701, 9.145710049258621568770070955734, 10.40239734879337093154202076735, 11.46494446111996955188613008636, 12.58533218067522064031375841121

Graph of the ZZ-function along the critical line