L(s) = 1 | + (−5.11 − 8.85i)2-s + (4.5 − 7.79i)3-s + (−36.2 + 62.8i)4-s + (11.8 + 20.5i)5-s − 92.0·6-s + 414.·8-s + (−40.5 − 70.1i)9-s + (121. − 210. i)10-s + (−232. + 403. i)11-s + (326. + 565. i)12-s + 1.01e3·13-s + 213.·15-s + (−957. − 1.65e3i)16-s + (280. − 486. i)17-s + (−414. + 717. i)18-s + (−693. − 1.20e3i)19-s + ⋯ |
L(s) = 1 | + (−0.903 − 1.56i)2-s + (0.288 − 0.499i)3-s + (−1.13 + 1.96i)4-s + (0.212 + 0.367i)5-s − 1.04·6-s + 2.28·8-s + (−0.166 − 0.288i)9-s + (0.383 − 0.665i)10-s + (−0.580 + 1.00i)11-s + (0.654 + 1.13i)12-s + 1.67·13-s + 0.245·15-s + (−0.935 − 1.61i)16-s + (0.235 − 0.408i)17-s + (−0.301 + 0.521i)18-s + (−0.440 − 0.763i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.052412797\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.052412797\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (5.11 + 8.85i)T + (-16 + 27.7i)T^{2} \) |
| 5 | \( 1 + (-11.8 - 20.5i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (232. - 403. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 1.01e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-280. + 486. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (693. + 1.20e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (2.05e3 + 3.56e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 2.38e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.47e3 + 2.55e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.95e3 - 8.58e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 4.47e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 5.18e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.56e3 + 2.70e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (570. - 988. i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.37e4 + 2.38e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.05e4 + 1.82e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-2.77e4 + 4.81e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 6.07e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (8.38e3 - 1.45e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-2.42e3 - 4.19e3i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 6.01e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (3.12e4 + 5.41e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 6.36e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46447019241801204306821773389, −10.64151187857672344600850050671, −9.793758036504880033244410474658, −8.700150711315663389742166283506, −7.905906258094655659614503198236, −6.47897762938852464969642430730, −4.30261160042549693159129301285, −2.88507736115406102639415293585, −1.94483381893942027133782249754, −0.54729771755197061543776263797,
1.18639935162307989511689772319, 3.79577306955930683834142523529, 5.54555564741541791102241724933, 6.02149145143438953526290768287, 7.63276852745452037266611405024, 8.461969202012365247862509669241, 9.103192578622394364126833188663, 10.21622869522160308229197000928, 11.13709753126570858894956685514, 13.14635304052177113524246113008