L(s) = 1 | + (−5.11 − 8.85i)2-s + (4.5 − 7.79i)3-s + (−36.2 + 62.8i)4-s + (11.8 + 20.5i)5-s − 92.0·6-s + 414.·8-s + (−40.5 − 70.1i)9-s + (121. − 210. i)10-s + (−232. + 403. i)11-s + (326. + 565. i)12-s + 1.01e3·13-s + 213.·15-s + (−957. − 1.65e3i)16-s + (280. − 486. i)17-s + (−414. + 717. i)18-s + (−693. − 1.20e3i)19-s + ⋯ |
L(s) = 1 | + (−0.903 − 1.56i)2-s + (0.288 − 0.499i)3-s + (−1.13 + 1.96i)4-s + (0.212 + 0.367i)5-s − 1.04·6-s + 2.28·8-s + (−0.166 − 0.288i)9-s + (0.383 − 0.665i)10-s + (−0.580 + 1.00i)11-s + (0.654 + 1.13i)12-s + 1.67·13-s + 0.245·15-s + (−0.935 − 1.61i)16-s + (0.235 − 0.408i)17-s + (−0.301 + 0.521i)18-s + (−0.440 − 0.763i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.991+0.126i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.991+0.126i)
|
Particular Values
L(3) |
≈ |
1.052412797 |
L(21) |
≈ |
1.052412797 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 2 | 1+(5.11+8.85i)T+(−16+27.7i)T2 |
| 5 | 1+(−11.8−20.5i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(232.−403.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−1.01e3T+3.71e5T2 |
| 17 | 1+(−280.+486.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(693.+1.20e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(2.05e3+3.56e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+2.38e3T+2.05e7T2 |
| 31 | 1+(−1.47e3+2.55e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−4.95e3−8.58e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−4.47e3T+1.15e8T2 |
| 43 | 1−5.18e3T+1.47e8T2 |
| 47 | 1+(1.56e3+2.70e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(570.−988.i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−1.37e4+2.38e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.05e4+1.82e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−2.77e4+4.81e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+6.07e3T+1.80e9T2 |
| 73 | 1+(8.38e3−1.45e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−2.42e3−4.19e3i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+6.01e4T+3.93e9T2 |
| 89 | 1+(3.12e4+5.41e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−6.36e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46447019241801204306821773389, −10.64151187857672344600850050671, −9.793758036504880033244410474658, −8.700150711315663389742166283506, −7.905906258094655659614503198236, −6.47897762938852464969642430730, −4.30261160042549693159129301285, −2.88507736115406102639415293585, −1.94483381893942027133782249754, −0.54729771755197061543776263797,
1.18639935162307989511689772319, 3.79577306955930683834142523529, 5.54555564741541791102241724933, 6.02149145143438953526290768287, 7.63276852745452037266611405024, 8.461969202012365247862509669241, 9.103192578622394364126833188663, 10.21622869522160308229197000928, 11.13709753126570858894956685514, 13.14635304052177113524246113008