L(s) = 1 | + (4.59 − 7.95i)2-s + (4.5 + 7.79i)3-s + (−26.1 − 45.2i)4-s + (11.0 − 19.1i)5-s + 82.6·6-s − 186.·8-s + (−40.5 + 70.1i)9-s + (−101. − 175. i)10-s + (−208. − 360. i)11-s + (235. − 407. i)12-s − 797.·13-s + 198.·15-s + (−18.6 + 32.3i)16-s + (−687. − 1.19e3i)17-s + (371. + 644. i)18-s + (1.15e3 − 2.00e3i)19-s + ⋯ |
L(s) = 1 | + (0.811 − 1.40i)2-s + (0.288 + 0.499i)3-s + (−0.817 − 1.41i)4-s + (0.197 − 0.341i)5-s + 0.937·6-s − 1.02·8-s + (−0.166 + 0.288i)9-s + (−0.320 − 0.554i)10-s + (−0.519 − 0.899i)11-s + (0.471 − 0.817i)12-s − 1.30·13-s + 0.227·15-s + (−0.0182 + 0.0315i)16-s + (−0.577 − 0.999i)17-s + (0.270 + 0.468i)18-s + (0.734 − 1.27i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.334681374\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.334681374\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-4.59 + 7.95i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (-11.0 + 19.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (208. + 360. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 797.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (687. + 1.19e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-1.15e3 + 2.00e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-477. + 827. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 7.03e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-630. - 1.09e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (4.88e3 - 8.46e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 5.40e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.96e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.02e3 + 1.78e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (9.01e3 + 1.56e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-3.71e3 - 6.43e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.74e3 + 3.02e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (7.92e3 + 1.37e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 5.81e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-1.95e4 - 3.38e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.88e3 - 8.45e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 7.03e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-7.21e4 + 1.24e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 7.93e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49438990463545628546477636352, −10.91281227628661464338405879748, −9.720271996588236137951028684577, −9.050706312306071607252860432709, −7.36801561970985846652697332323, −5.32577318534173093049250012105, −4.72957975982543698217639054564, −3.23844859942235457790333170546, −2.36397423999022205422348389040, −0.55243391021753936573227649399,
2.17325847057059899031331605466, 3.91480400933301333557298442757, 5.21881478637155298753839855213, 6.24064957355662710594290625112, 7.38598943051586544447580285725, 7.80361885954052505471196119962, 9.314294834162840189750595297530, 10.57305772372926912738942836236, 12.34487474720154039834614486751, 12.79816465498666765827223931725