L(s) = 1 | + (4.59 − 7.95i)2-s + (4.5 + 7.79i)3-s + (−26.1 − 45.2i)4-s + (11.0 − 19.1i)5-s + 82.6·6-s − 186.·8-s + (−40.5 + 70.1i)9-s + (−101. − 175. i)10-s + (−208. − 360. i)11-s + (235. − 407. i)12-s − 797.·13-s + 198.·15-s + (−18.6 + 32.3i)16-s + (−687. − 1.19e3i)17-s + (371. + 644. i)18-s + (1.15e3 − 2.00e3i)19-s + ⋯ |
L(s) = 1 | + (0.811 − 1.40i)2-s + (0.288 + 0.499i)3-s + (−0.817 − 1.41i)4-s + (0.197 − 0.341i)5-s + 0.937·6-s − 1.02·8-s + (−0.166 + 0.288i)9-s + (−0.320 − 0.554i)10-s + (−0.519 − 0.899i)11-s + (0.471 − 0.817i)12-s − 1.30·13-s + 0.227·15-s + (−0.0182 + 0.0315i)16-s + (−0.577 − 0.999i)17-s + (0.270 + 0.468i)18-s + (0.734 − 1.27i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.991−0.126i)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)(−0.991−0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.991−0.126i
|
Analytic conductor: |
23.5764 |
Root analytic conductor: |
4.85555 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :5/2), −0.991−0.126i)
|
Particular Values
L(3) |
≈ |
2.334681374 |
L(21) |
≈ |
2.334681374 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.5−7.79i)T |
| 7 | 1 |
good | 2 | 1+(−4.59+7.95i)T+(−16−27.7i)T2 |
| 5 | 1+(−11.0+19.1i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(208.+360.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+797.T+3.71e5T2 |
| 17 | 1+(687.+1.19e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−1.15e3+2.00e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−477.+827.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+7.03e3T+2.05e7T2 |
| 31 | 1+(−630.−1.09e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(4.88e3−8.46e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−5.40e3T+1.15e8T2 |
| 43 | 1−1.96e4T+1.47e8T2 |
| 47 | 1+(−1.02e3+1.78e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(9.01e3+1.56e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−3.71e3−6.43e3i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.74e3+3.02e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(7.92e3+1.37e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−5.81e4T+1.80e9T2 |
| 73 | 1+(−1.95e4−3.38e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(4.88e3−8.45e3i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−7.03e4T+3.93e9T2 |
| 89 | 1+(−7.21e4+1.24e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−7.93e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49438990463545628546477636352, −10.91281227628661464338405879748, −9.720271996588236137951028684577, −9.050706312306071607252860432709, −7.36801561970985846652697332323, −5.32577318534173093049250012105, −4.72957975982543698217639054564, −3.23844859942235457790333170546, −2.36397423999022205422348389040, −0.55243391021753936573227649399,
2.17325847057059899031331605466, 3.91480400933301333557298442757, 5.21881478637155298753839855213, 6.24064957355662710594290625112, 7.38598943051586544447580285725, 7.80361885954052505471196119962, 9.314294834162840189750595297530, 10.57305772372926912738942836236, 12.34487474720154039834614486751, 12.79816465498666765827223931725