L(s) = 1 | + (1.20 − 2.09i)2-s + (0.5 + 0.866i)3-s + (−1.91 − 3.31i)4-s + (0.292 − 0.507i)5-s + 2.41·6-s − 4.41·8-s + (−0.499 + 0.866i)9-s + (−0.707 − 1.22i)10-s + (1 + 1.73i)11-s + (1.91 − 3.31i)12-s − 5.41·13-s + 0.585·15-s + (−1.49 + 2.59i)16-s + (3.12 + 5.40i)17-s + (1.20 + 2.09i)18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (0.853 − 1.47i)2-s + (0.288 + 0.499i)3-s + (−0.957 − 1.65i)4-s + (0.130 − 0.226i)5-s + 0.985·6-s − 1.56·8-s + (−0.166 + 0.288i)9-s + (−0.223 − 0.387i)10-s + (0.301 + 0.522i)11-s + (0.552 − 0.957i)12-s − 1.50·13-s + 0.151·15-s + (−0.374 + 0.649i)16-s + (0.757 + 1.31i)17-s + (0.284 + 0.492i)18-s + (0.324 − 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15995 - 1.24740i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15995 - 1.24740i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.20 + 2.09i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.292 + 0.507i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.41T + 13T^{2} \) |
| 17 | \( 1 + (-3.12 - 5.40i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.82 - 3.16i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.17T + 29T^{2} \) |
| 31 | \( 1 + (3.41 + 5.91i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.24T + 41T^{2} \) |
| 43 | \( 1 + 5.65T + 43T^{2} \) |
| 47 | \( 1 + (-1.41 + 2.44i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 - 1.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.41 + 5.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.87 + 3.25i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.82 + 4.89i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 + (2.94 + 5.10i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.17 - 2.02i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.3T + 83T^{2} \) |
| 89 | \( 1 + (2.87 - 4.98i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 5.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.66702220215125935320562188260, −11.92217519573507199466513811231, −10.87811590835846789043656763950, −9.889510928048099504963370216341, −9.311656244740961829791763617556, −7.57433717323487988304552963124, −5.57176317418056938817905304053, −4.57043138743411482840729084786, −3.43581297509463027675472343068, −1.98677109128099668675269595975,
3.03684330363718662259261721206, 4.69307314737029500098423310459, 5.80647170531078770796941100252, 6.94583933269027828633817373627, 7.61294315908616873244959779219, 8.727657081669744181563898226769, 10.04692161610703631011305794187, 11.87814090679738796004096596894, 12.58572258318403150468513277789, 13.75230583028398820210289807479