L(s) = 1 | + (1.20 − 2.09i)2-s + (0.5 + 0.866i)3-s + (−1.91 − 3.31i)4-s + (0.292 − 0.507i)5-s + 2.41·6-s − 4.41·8-s + (−0.499 + 0.866i)9-s + (−0.707 − 1.22i)10-s + (1 + 1.73i)11-s + (1.91 − 3.31i)12-s − 5.41·13-s + 0.585·15-s + (−1.49 + 2.59i)16-s + (3.12 + 5.40i)17-s + (1.20 + 2.09i)18-s + (1.41 − 2.44i)19-s + ⋯ |
L(s) = 1 | + (0.853 − 1.47i)2-s + (0.288 + 0.499i)3-s + (−0.957 − 1.65i)4-s + (0.130 − 0.226i)5-s + 0.985·6-s − 1.56·8-s + (−0.166 + 0.288i)9-s + (−0.223 − 0.387i)10-s + (0.301 + 0.522i)11-s + (0.552 − 0.957i)12-s − 1.50·13-s + 0.151·15-s + (−0.374 + 0.649i)16-s + (0.757 + 1.31i)17-s + (0.284 + 0.492i)18-s + (0.324 − 0.561i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(−0.0725+0.997i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(−0.0725+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
−0.0725+0.997i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), −0.0725+0.997i)
|
Particular Values
L(1) |
≈ |
1.15995−1.24740i |
L(21) |
≈ |
1.15995−1.24740i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 7 | 1 |
good | 2 | 1+(−1.20+2.09i)T+(−1−1.73i)T2 |
| 5 | 1+(−0.292+0.507i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+5.41T+13T2 |
| 17 | 1+(−3.12−5.40i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.41+2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.82−3.16i)T+(−11.5−19.9i)T2 |
| 29 | 1+1.17T+29T2 |
| 31 | 1+(3.41+5.91i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2+3.46i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.24T+41T2 |
| 43 | 1+5.65T+43T2 |
| 47 | 1+(−1.41+2.44i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1−1.73i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.41+5.91i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.87+3.25i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.82+4.89i)T+(−33.5+58.0i)T2 |
| 71 | 1+13.3T+71T2 |
| 73 | 1+(2.94+5.10i)T+(−36.5+63.2i)T2 |
| 79 | 1+(1.17−2.02i)T+(−39.5−68.4i)T2 |
| 83 | 1−15.3T+83T2 |
| 89 | 1+(2.87−4.98i)T+(−44.5−77.0i)T2 |
| 97 | 1+5.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.66702220215125935320562188260, −11.92217519573507199466513811231, −10.87811590835846789043656763950, −9.889510928048099504963370216341, −9.311656244740961829791763617556, −7.57433717323487988304552963124, −5.57176317418056938817905304053, −4.57043138743411482840729084786, −3.43581297509463027675472343068, −1.98677109128099668675269595975,
3.03684330363718662259261721206, 4.69307314737029500098423310459, 5.80647170531078770796941100252, 6.94583933269027828633817373627, 7.61294315908616873244959779219, 8.727657081669744181563898226769, 10.04692161610703631011305794187, 11.87814090679738796004096596894, 12.58572258318403150468513277789, 13.75230583028398820210289807479