L(s) = 1 | + (−0.207 + 0.358i)2-s + (0.5 + 0.866i)3-s + (0.914 + 1.58i)4-s + (1.70 − 2.95i)5-s − 0.414·6-s − 1.58·8-s + (−0.499 + 0.866i)9-s + (0.707 + 1.22i)10-s + (1 + 1.73i)11-s + (−0.914 + 1.58i)12-s − 2.58·13-s + 3.41·15-s + (−1.49 + 2.59i)16-s + (−1.12 − 1.94i)17-s + (−0.207 − 0.358i)18-s + (−1.41 + 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.146 + 0.253i)2-s + (0.288 + 0.499i)3-s + (0.457 + 0.791i)4-s + (0.763 − 1.32i)5-s − 0.169·6-s − 0.560·8-s + (−0.166 + 0.288i)9-s + (0.223 + 0.387i)10-s + (0.301 + 0.522i)11-s + (−0.263 + 0.457i)12-s − 0.717·13-s + 0.881·15-s + (−0.374 + 0.649i)16-s + (−0.271 − 0.471i)17-s + (−0.0488 − 0.0845i)18-s + (−0.324 + 0.561i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.749−0.661i)Λ(2−s)
Λ(s)=(=(147s/2ΓC(s+1/2)L(s)(0.749−0.661i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.749−0.661i
|
Analytic conductor: |
1.17380 |
Root analytic conductor: |
1.08342 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :1/2), 0.749−0.661i)
|
Particular Values
L(1) |
≈ |
1.21112+0.457928i |
L(21) |
≈ |
1.21112+0.457928i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 7 | 1 |
good | 2 | 1+(0.207−0.358i)T+(−1−1.73i)T2 |
| 5 | 1+(−1.70+2.95i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+2.58T+13T2 |
| 17 | 1+(1.12+1.94i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.41−2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.82+6.63i)T+(−11.5−19.9i)T2 |
| 29 | 1+6.82T+29T2 |
| 31 | 1+(0.585+1.01i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2+3.46i)T+(−18.5−32.0i)T2 |
| 41 | 1+6.24T+41T2 |
| 43 | 1−5.65T+43T2 |
| 47 | 1+(1.41−2.44i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1−1.73i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.585+1.01i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.12+10.6i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.82−4.89i)T+(−33.5+58.0i)T2 |
| 71 | 1−9.31T+71T2 |
| 73 | 1+(−6.94−12.0i)T+(−36.5+63.2i)T2 |
| 79 | 1+(6.82−11.8i)T+(−39.5−68.4i)T2 |
| 83 | 1+7.31T+83T2 |
| 89 | 1+(7.12−12.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+2.58T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84605580745188520116095561807, −12.52093737635660074777789998122, −11.20430087055643746324755995282, −9.762587299902956233208971903441, −9.035351245279866829599741745252, −8.136709774759497825112418332544, −6.84111233223846220194210314734, −5.35204718184660538430895470686, −4.17526723950096684770236833405, −2.30619245105572922245043296140,
1.93060194382655682929945983018, 3.11633590144782128325846682748, 5.56402701137154873391531483432, 6.55030564562380442777133054919, 7.32111794603211418314867556170, 9.078299705054228347854104539727, 9.976648794703119148991022507653, 10.93508584965005132476859004473, 11.62050185568625122740774259941, 13.14047675504863346171648618576