L(s) = 1 | + (−0.207 + 0.358i)2-s + (0.5 + 0.866i)3-s + (0.914 + 1.58i)4-s + (1.70 − 2.95i)5-s − 0.414·6-s − 1.58·8-s + (−0.499 + 0.866i)9-s + (0.707 + 1.22i)10-s + (1 + 1.73i)11-s + (−0.914 + 1.58i)12-s − 2.58·13-s + 3.41·15-s + (−1.49 + 2.59i)16-s + (−1.12 − 1.94i)17-s + (−0.207 − 0.358i)18-s + (−1.41 + 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.146 + 0.253i)2-s + (0.288 + 0.499i)3-s + (0.457 + 0.791i)4-s + (0.763 − 1.32i)5-s − 0.169·6-s − 0.560·8-s + (−0.166 + 0.288i)9-s + (0.223 + 0.387i)10-s + (0.301 + 0.522i)11-s + (−0.263 + 0.457i)12-s − 0.717·13-s + 0.881·15-s + (−0.374 + 0.649i)16-s + (−0.271 − 0.471i)17-s + (−0.0488 − 0.0845i)18-s + (−0.324 + 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21112 + 0.457928i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21112 + 0.457928i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.207 - 0.358i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.70 + 2.95i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.58T + 13T^{2} \) |
| 17 | \( 1 + (1.12 + 1.94i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.82 + 6.63i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.82T + 29T^{2} \) |
| 31 | \( 1 + (0.585 + 1.01i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.24T + 41T^{2} \) |
| 43 | \( 1 - 5.65T + 43T^{2} \) |
| 47 | \( 1 + (1.41 - 2.44i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 - 1.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.585 + 1.01i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.12 + 10.6i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.82 - 4.89i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.31T + 71T^{2} \) |
| 73 | \( 1 + (-6.94 - 12.0i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.82 - 11.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.31T + 83T^{2} \) |
| 89 | \( 1 + (7.12 - 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.58T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84605580745188520116095561807, −12.52093737635660074777789998122, −11.20430087055643746324755995282, −9.762587299902956233208971903441, −9.035351245279866829599741745252, −8.136709774759497825112418332544, −6.84111233223846220194210314734, −5.35204718184660538430895470686, −4.17526723950096684770236833405, −2.30619245105572922245043296140,
1.93060194382655682929945983018, 3.11633590144782128325846682748, 5.56402701137154873391531483432, 6.55030564562380442777133054919, 7.32111794603211418314867556170, 9.078299705054228347854104539727, 9.976648794703119148991022507653, 10.93508584965005132476859004473, 11.62050185568625122740774259941, 13.14047675504863346171648618576