Properties

Label 2-147-21.20-c7-0-73
Degree $2$
Conductor $147$
Sign $-0.967 - 0.251i$
Analytic cond. $45.9205$
Root an. cond. $6.77647$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.91i·2-s + (−18.6 + 42.8i)3-s + 48.5·4-s − 62.4·5-s + (382. + 166. i)6-s − 1.57e3i·8-s + (−1.48e3 − 1.60e3i)9-s + 556. i·10-s + 1.51e3i·11-s + (−906. + 2.08e3i)12-s + 1.53e3i·13-s + (1.16e3 − 2.67e3i)15-s − 7.81e3·16-s + 1.19e4·17-s + (−1.42e4 + 1.32e4i)18-s + 1.71e4i·19-s + ⋯
L(s)  = 1  − 0.787i·2-s + (−0.399 + 0.916i)3-s + 0.379·4-s − 0.223·5-s + (0.722 + 0.314i)6-s − 1.08i·8-s + (−0.680 − 0.732i)9-s + 0.176i·10-s + 0.343i·11-s + (−0.151 + 0.347i)12-s + 0.193i·13-s + (0.0892 − 0.204i)15-s − 0.477·16-s + 0.590·17-s + (−0.577 + 0.536i)18-s + 0.572i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 - 0.251i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.967 - 0.251i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-0.967 - 0.251i$
Analytic conductor: \(45.9205\)
Root analytic conductor: \(6.77647\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (146, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :7/2),\ -0.967 - 0.251i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.06109935688\)
\(L(\frac12)\) \(\approx\) \(0.06109935688\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (18.6 - 42.8i)T \)
7 \( 1 \)
good2 \( 1 + 8.91iT - 128T^{2} \)
5 \( 1 + 62.4T + 7.81e4T^{2} \)
11 \( 1 - 1.51e3iT - 1.94e7T^{2} \)
13 \( 1 - 1.53e3iT - 6.27e7T^{2} \)
17 \( 1 - 1.19e4T + 4.10e8T^{2} \)
19 \( 1 - 1.71e4iT - 8.93e8T^{2} \)
23 \( 1 - 5.66e4iT - 3.40e9T^{2} \)
29 \( 1 + 2.39e5iT - 1.72e10T^{2} \)
31 \( 1 - 1.43e5iT - 2.75e10T^{2} \)
37 \( 1 + 2.07e5T + 9.49e10T^{2} \)
41 \( 1 + 4.06e3T + 1.94e11T^{2} \)
43 \( 1 + 7.32e5T + 2.71e11T^{2} \)
47 \( 1 + 1.20e6T + 5.06e11T^{2} \)
53 \( 1 + 1.07e6iT - 1.17e12T^{2} \)
59 \( 1 + 2.94e5T + 2.48e12T^{2} \)
61 \( 1 + 2.82e6iT - 3.14e12T^{2} \)
67 \( 1 + 7.17e4T + 6.06e12T^{2} \)
71 \( 1 - 4.62e6iT - 9.09e12T^{2} \)
73 \( 1 - 4.72e6iT - 1.10e13T^{2} \)
79 \( 1 + 5.76e6T + 1.92e13T^{2} \)
83 \( 1 + 7.20e6T + 2.71e13T^{2} \)
89 \( 1 + 3.91e6T + 4.42e13T^{2} \)
97 \( 1 + 1.62e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41521056866922352739699692812, −10.02626372058317045094381046697, −9.785230604316507148269880127716, −8.147875998724711334885316466745, −6.74247875977839601909726477822, −5.52606068817150247430097149197, −4.10034323881524123053403134616, −3.20311795956196417359814856595, −1.64047053884867331293629281822, −0.01633767783950589532477397404, 1.56797347903765155504271958203, 2.96064725524879273282921873821, 5.04974416642390457340851883560, 6.05504070477773657328551698102, 6.94875580681397411570678612538, 7.81534251735269673193450205667, 8.690042421718821883168677271981, 10.48940191724471675878586194721, 11.42659399092357434302921462613, 12.20025987287249462373501826459

Graph of the $Z$-function along the critical line