Properties

Label 2-147-1.1-c5-0-26
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.2·2-s + 9·3-s + 72.5·4-s + 23.7·5-s + 92.0·6-s + 414.·8-s + 81·9-s + 242.·10-s + 465.·11-s + 652.·12-s − 1.01e3·13-s + 213.·15-s + 1.91e3·16-s + 561.·17-s + 828.·18-s − 1.38e3·19-s + 1.72e3·20-s + 4.75e3·22-s + 4.11e3·23-s + 3.72e3·24-s − 2.56e3·25-s − 1.04e4·26-s + 729·27-s − 2.38e3·29-s + 2.18e3·30-s + 2.95e3·31-s + 6.32e3·32-s + ⋯
L(s)  = 1  + 1.80·2-s + 0.577·3-s + 2.26·4-s + 0.424·5-s + 1.04·6-s + 2.28·8-s + 0.333·9-s + 0.767·10-s + 1.16·11-s + 1.30·12-s − 1.67·13-s + 0.245·15-s + 1.87·16-s + 0.471·17-s + 0.602·18-s − 0.881·19-s + 0.963·20-s + 2.09·22-s + 1.62·23-s + 1.32·24-s − 0.819·25-s − 3.02·26-s + 0.192·27-s − 0.525·29-s + 0.443·30-s + 0.551·31-s + 1.09·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(7.374919170\)
\(L(\frac12)\) \(\approx\) \(7.374919170\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
7 \( 1 \)
good2 \( 1 - 10.2T + 32T^{2} \)
5 \( 1 - 23.7T + 3.12e3T^{2} \)
11 \( 1 - 465.T + 1.61e5T^{2} \)
13 \( 1 + 1.01e3T + 3.71e5T^{2} \)
17 \( 1 - 561.T + 1.41e6T^{2} \)
19 \( 1 + 1.38e3T + 2.47e6T^{2} \)
23 \( 1 - 4.11e3T + 6.43e6T^{2} \)
29 \( 1 + 2.38e3T + 2.05e7T^{2} \)
31 \( 1 - 2.95e3T + 2.86e7T^{2} \)
37 \( 1 + 9.90e3T + 6.93e7T^{2} \)
41 \( 1 + 4.47e3T + 1.15e8T^{2} \)
43 \( 1 - 5.18e3T + 1.47e8T^{2} \)
47 \( 1 + 3.12e3T + 2.29e8T^{2} \)
53 \( 1 - 1.14e3T + 4.18e8T^{2} \)
59 \( 1 - 2.74e4T + 7.14e8T^{2} \)
61 \( 1 + 2.11e4T + 8.44e8T^{2} \)
67 \( 1 + 5.55e4T + 1.35e9T^{2} \)
71 \( 1 + 6.07e3T + 1.80e9T^{2} \)
73 \( 1 + 1.67e4T + 2.07e9T^{2} \)
79 \( 1 + 4.84e3T + 3.07e9T^{2} \)
83 \( 1 - 6.01e4T + 3.93e9T^{2} \)
89 \( 1 + 6.24e4T + 5.58e9T^{2} \)
97 \( 1 + 6.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.39635573232361945791735854184, −11.64004192126054526133855338309, −10.30413947452200291864367984914, −9.116183313441131394148809465866, −7.40531694628912075524526028804, −6.54724847647037084352551908362, −5.27006957305223147410689500831, −4.23979870455222121548272321789, −3.02353116087827822112528580437, −1.86141064336625750071593011878, 1.86141064336625750071593011878, 3.02353116087827822112528580437, 4.23979870455222121548272321789, 5.27006957305223147410689500831, 6.54724847647037084352551908362, 7.40531694628912075524526028804, 9.116183313441131394148809465866, 10.30413947452200291864367984914, 11.64004192126054526133855338309, 12.39635573232361945791735854184

Graph of the $Z$-function along the critical line