L(s) = 1 | + 10.2·2-s + 9·3-s + 72.5·4-s + 23.7·5-s + 92.0·6-s + 414.·8-s + 81·9-s + 242.·10-s + 465.·11-s + 652.·12-s − 1.01e3·13-s + 213.·15-s + 1.91e3·16-s + 561.·17-s + 828.·18-s − 1.38e3·19-s + 1.72e3·20-s + 4.75e3·22-s + 4.11e3·23-s + 3.72e3·24-s − 2.56e3·25-s − 1.04e4·26-s + 729·27-s − 2.38e3·29-s + 2.18e3·30-s + 2.95e3·31-s + 6.32e3·32-s + ⋯ |
L(s) = 1 | + 1.80·2-s + 0.577·3-s + 2.26·4-s + 0.424·5-s + 1.04·6-s + 2.28·8-s + 0.333·9-s + 0.767·10-s + 1.16·11-s + 1.30·12-s − 1.67·13-s + 0.245·15-s + 1.87·16-s + 0.471·17-s + 0.602·18-s − 0.881·19-s + 0.963·20-s + 2.09·22-s + 1.62·23-s + 1.32·24-s − 0.819·25-s − 3.02·26-s + 0.192·27-s − 0.525·29-s + 0.443·30-s + 0.551·31-s + 1.09·32-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(147s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
7.374919170 |
L(21) |
≈ |
7.374919170 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 7 | 1 |
good | 2 | 1−10.2T+32T2 |
| 5 | 1−23.7T+3.12e3T2 |
| 11 | 1−465.T+1.61e5T2 |
| 13 | 1+1.01e3T+3.71e5T2 |
| 17 | 1−561.T+1.41e6T2 |
| 19 | 1+1.38e3T+2.47e6T2 |
| 23 | 1−4.11e3T+6.43e6T2 |
| 29 | 1+2.38e3T+2.05e7T2 |
| 31 | 1−2.95e3T+2.86e7T2 |
| 37 | 1+9.90e3T+6.93e7T2 |
| 41 | 1+4.47e3T+1.15e8T2 |
| 43 | 1−5.18e3T+1.47e8T2 |
| 47 | 1+3.12e3T+2.29e8T2 |
| 53 | 1−1.14e3T+4.18e8T2 |
| 59 | 1−2.74e4T+7.14e8T2 |
| 61 | 1+2.11e4T+8.44e8T2 |
| 67 | 1+5.55e4T+1.35e9T2 |
| 71 | 1+6.07e3T+1.80e9T2 |
| 73 | 1+1.67e4T+2.07e9T2 |
| 79 | 1+4.84e3T+3.07e9T2 |
| 83 | 1−6.01e4T+3.93e9T2 |
| 89 | 1+6.24e4T+5.58e9T2 |
| 97 | 1+6.36e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.39635573232361945791735854184, −11.64004192126054526133855338309, −10.30413947452200291864367984914, −9.116183313441131394148809465866, −7.40531694628912075524526028804, −6.54724847647037084352551908362, −5.27006957305223147410689500831, −4.23979870455222121548272321789, −3.02353116087827822112528580437, −1.86141064336625750071593011878,
1.86141064336625750071593011878, 3.02353116087827822112528580437, 4.23979870455222121548272321789, 5.27006957305223147410689500831, 6.54724847647037084352551908362, 7.40531694628912075524526028804, 9.116183313441131394148809465866, 10.30413947452200291864367984914, 11.64004192126054526133855338309, 12.39635573232361945791735854184