Properties

Label 2-1458-1.1-c1-0-26
Degree $2$
Conductor $1458$
Sign $-1$
Analytic cond. $11.6421$
Root an. cond. $3.41206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 0.384·5-s + 0.948·7-s − 8-s − 0.384·10-s − 1.61·11-s − 4.33·13-s − 0.948·14-s + 16-s − 1.49·17-s + 6.66·19-s + 0.384·20-s + 1.61·22-s − 6.58·23-s − 4.85·25-s + 4.33·26-s + 0.948·28-s − 10.1·29-s + 4.20·31-s − 32-s + 1.49·34-s + 0.365·35-s − 3.40·37-s − 6.66·38-s − 0.384·40-s + 3.84·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.172·5-s + 0.358·7-s − 0.353·8-s − 0.121·10-s − 0.485·11-s − 1.20·13-s − 0.253·14-s + 0.250·16-s − 0.362·17-s + 1.52·19-s + 0.0860·20-s + 0.343·22-s − 1.37·23-s − 0.970·25-s + 0.850·26-s + 0.179·28-s − 1.87·29-s + 0.755·31-s − 0.176·32-s + 0.256·34-s + 0.0617·35-s − 0.559·37-s − 1.08·38-s − 0.0608·40-s + 0.600·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1458\)    =    \(2 \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(11.6421\)
Root analytic conductor: \(3.41206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1458,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
good5 \( 1 - 0.384T + 5T^{2} \)
7 \( 1 - 0.948T + 7T^{2} \)
11 \( 1 + 1.61T + 11T^{2} \)
13 \( 1 + 4.33T + 13T^{2} \)
17 \( 1 + 1.49T + 17T^{2} \)
19 \( 1 - 6.66T + 19T^{2} \)
23 \( 1 + 6.58T + 23T^{2} \)
29 \( 1 + 10.1T + 29T^{2} \)
31 \( 1 - 4.20T + 31T^{2} \)
37 \( 1 + 3.40T + 37T^{2} \)
41 \( 1 - 3.84T + 41T^{2} \)
43 \( 1 - 1.82T + 43T^{2} \)
47 \( 1 + 9.48T + 47T^{2} \)
53 \( 1 - 2.01T + 53T^{2} \)
59 \( 1 - 9.00T + 59T^{2} \)
61 \( 1 - 8.60T + 61T^{2} \)
67 \( 1 + 11.6T + 67T^{2} \)
71 \( 1 + 0.440T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 + 13.3T + 79T^{2} \)
83 \( 1 + 7.98T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.360245066970196974720075144280, −8.131316954114803313601622113396, −7.69914269219120191250318047338, −6.92254768220595860648143010548, −5.77655626303438235980467980010, −5.11527214679120998293049656288, −3.88556933956892538638341997233, −2.63552772018596069645321935470, −1.71026421225617121334907129850, 0, 1.71026421225617121334907129850, 2.63552772018596069645321935470, 3.88556933956892538638341997233, 5.11527214679120998293049656288, 5.77655626303438235980467980010, 6.92254768220595860648143010548, 7.69914269219120191250318047338, 8.131316954114803313601622113396, 9.360245066970196974720075144280

Graph of the $Z$-function along the critical line