Properties

Label 2-1458-1.1-c1-0-16
Degree $2$
Conductor $1458$
Sign $1$
Analytic cond. $11.6421$
Root an. cond. $3.41206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.87·5-s + 3.75·7-s − 8-s − 3.87·10-s + 2.69·11-s − 4.71·13-s − 3.75·14-s + 16-s + 5.53·17-s + 1.06·19-s + 3.87·20-s − 2.69·22-s + 3.30·23-s + 10.0·25-s + 4.71·26-s + 3.75·28-s − 0.716·29-s − 4.82·31-s − 32-s − 5.53·34-s + 14.5·35-s − 0.551·37-s − 1.06·38-s − 3.87·40-s − 2.38·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.73·5-s + 1.42·7-s − 0.353·8-s − 1.22·10-s + 0.812·11-s − 1.30·13-s − 1.00·14-s + 0.250·16-s + 1.34·17-s + 0.244·19-s + 0.867·20-s − 0.574·22-s + 0.689·23-s + 2.00·25-s + 0.925·26-s + 0.710·28-s − 0.133·29-s − 0.866·31-s − 0.176·32-s − 0.948·34-s + 2.46·35-s − 0.0906·37-s − 0.172·38-s − 0.613·40-s − 0.373·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1458\)    =    \(2 \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(11.6421\)
Root analytic conductor: \(3.41206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1458,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.067777147\)
\(L(\frac12)\) \(\approx\) \(2.067777147\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
good5 \( 1 - 3.87T + 5T^{2} \)
7 \( 1 - 3.75T + 7T^{2} \)
11 \( 1 - 2.69T + 11T^{2} \)
13 \( 1 + 4.71T + 13T^{2} \)
17 \( 1 - 5.53T + 17T^{2} \)
19 \( 1 - 1.06T + 19T^{2} \)
23 \( 1 - 3.30T + 23T^{2} \)
29 \( 1 + 0.716T + 29T^{2} \)
31 \( 1 + 4.82T + 31T^{2} \)
37 \( 1 + 0.551T + 37T^{2} \)
41 \( 1 + 2.38T + 41T^{2} \)
43 \( 1 + 11.6T + 43T^{2} \)
47 \( 1 - 1.54T + 47T^{2} \)
53 \( 1 + 2.67T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 + 6.58T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 - 4.12T + 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 - 7.06T + 79T^{2} \)
83 \( 1 - 14.9T + 83T^{2} \)
89 \( 1 - 5.53T + 89T^{2} \)
97 \( 1 - 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.441130789889315802348913878039, −8.983653193361524013534410034858, −7.915754358667062486471196312039, −7.22987856526031233322839476527, −6.27550624991100449550167676614, −5.36057230835919548645208362095, −4.83308506231424456745404937784, −3.10280260233618169443853697140, −1.91322175677644226406406141932, −1.36326000725549227410141631487, 1.36326000725549227410141631487, 1.91322175677644226406406141932, 3.10280260233618169443853697140, 4.83308506231424456745404937784, 5.36057230835919548645208362095, 6.27550624991100449550167676614, 7.22987856526031233322839476527, 7.915754358667062486471196312039, 8.983653193361524013534410034858, 9.441130789889315802348913878039

Graph of the $Z$-function along the critical line