| L(s) = 1 | + (−1.40 − 2.42i)3-s + (−1.92 + 3.32i)5-s + (−2.62 − 0.296i)7-s + (−2.42 + 4.19i)9-s + (0.228 + 0.396i)11-s + 13-s + 10.7·15-s + (1.02 + 1.76i)17-s + (0.708 − 1.22i)19-s + (2.96 + 6.79i)21-s + (−3.44 + 5.96i)23-s + (−4.87 − 8.45i)25-s + 5.15·27-s + 0.199·29-s + (−0.400 − 0.693i)31-s + ⋯ |
| L(s) = 1 | + (−0.808 − 1.40i)3-s + (−0.858 + 1.48i)5-s + (−0.993 − 0.112i)7-s + (−0.806 + 1.39i)9-s + (0.0690 + 0.119i)11-s + 0.277·13-s + 2.77·15-s + (0.247 + 0.428i)17-s + (0.162 − 0.281i)19-s + (0.646 + 1.48i)21-s + (−0.717 + 1.24i)23-s + (−0.975 − 1.69i)25-s + 0.992·27-s + 0.0370·29-s + (−0.0718 − 0.124i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0489 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0489 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.5370405519\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5370405519\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.62 + 0.296i)T \) |
| 13 | \( 1 - T \) |
| good | 3 | \( 1 + (1.40 + 2.42i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.92 - 3.32i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.228 - 0.396i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.02 - 1.76i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.708 + 1.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.44 - 5.96i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.199T + 29T^{2} \) |
| 31 | \( 1 + (0.400 + 0.693i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.85 + 6.68i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.95T + 41T^{2} \) |
| 43 | \( 1 - 8.64T + 43T^{2} \) |
| 47 | \( 1 + (-1.22 + 2.12i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.157 - 0.273i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.45 + 12.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.65 + 11.5i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.94 + 6.84i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14.0T + 71T^{2} \) |
| 73 | \( 1 + (7.17 + 12.4i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.92 - 8.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 17.4T + 83T^{2} \) |
| 89 | \( 1 + (7.69 - 13.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.80T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.422809933075032888984616919479, −8.003100630055977578439966804522, −7.51466794768858033363712973699, −6.83454366353731856741465744562, −6.31539326586343347717699768376, −5.59652313078000483951920122508, −3.92657157875531704731326907773, −3.14907908660165076592717962986, −1.99279207489948746188162265146, −0.35086389330200191846204242938,
0.810044716544009018176718189920, 3.08199900698690273001005139040, 4.16956341303097414170701679077, 4.45125976944862284072563892415, 5.51156132497145005382228256864, 6.06476103087821499476242847336, 7.32723450758029338014514042470, 8.535927371152860308610403984022, 8.906855133063064217566684415786, 9.866366027397959362524768550647