L(s) = 1 | − 2.44·3-s + 1.44·5-s + 7-s + 2.99·9-s − 1.55·11-s − 13-s − 3.55·15-s − 2.44·17-s − 5.44·19-s − 2.44·21-s + 5.89·23-s − 2.89·25-s + 3.89·29-s + 1.44·31-s + 3.79·33-s + 1.44·35-s − 3.55·37-s + 2.44·39-s + 1.10·41-s − 43-s + 4.34·45-s + 1.44·47-s + 49-s + 5.99·51-s − 7.89·53-s − 2.24·55-s + 13.3·57-s + ⋯ |
L(s) = 1 | − 1.41·3-s + 0.648·5-s + 0.377·7-s + 0.999·9-s − 0.467·11-s − 0.277·13-s − 0.916·15-s − 0.594·17-s − 1.25·19-s − 0.534·21-s + 1.23·23-s − 0.579·25-s + 0.724·29-s + 0.260·31-s + 0.661·33-s + 0.245·35-s − 0.583·37-s + 0.392·39-s + 0.171·41-s − 0.152·43-s + 0.648·45-s + 0.211·47-s + 0.142·49-s + 0.840·51-s − 1.08·53-s − 0.303·55-s + 1.76·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + 2.44T + 3T^{2} \) |
| 5 | \( 1 - 1.44T + 5T^{2} \) |
| 11 | \( 1 + 1.55T + 11T^{2} \) |
| 17 | \( 1 + 2.44T + 17T^{2} \) |
| 19 | \( 1 + 5.44T + 19T^{2} \) |
| 23 | \( 1 - 5.89T + 23T^{2} \) |
| 29 | \( 1 - 3.89T + 29T^{2} \) |
| 31 | \( 1 - 1.44T + 31T^{2} \) |
| 37 | \( 1 + 3.55T + 37T^{2} \) |
| 41 | \( 1 - 1.10T + 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 - 1.44T + 47T^{2} \) |
| 53 | \( 1 + 7.89T + 53T^{2} \) |
| 59 | \( 1 + 14T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 2.89T + 67T^{2} \) |
| 71 | \( 1 + 7.55T + 71T^{2} \) |
| 73 | \( 1 + 13.2T + 73T^{2} \) |
| 79 | \( 1 - 11.8T + 79T^{2} \) |
| 83 | \( 1 + 10.3T + 83T^{2} \) |
| 89 | \( 1 + 6.55T + 89T^{2} \) |
| 97 | \( 1 + 15.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.200686159916403648839369721504, −8.355341703671758276282817715156, −7.26586601235750076452220794070, −6.44719784554833115886527055218, −5.85937170281570623192006023466, −4.97825894742776151509125159063, −4.42276674001154711894334487428, −2.76519383144708211099522139967, −1.53911984482777626896834633845, 0,
1.53911984482777626896834633845, 2.76519383144708211099522139967, 4.42276674001154711894334487428, 4.97825894742776151509125159063, 5.85937170281570623192006023466, 6.44719784554833115886527055218, 7.26586601235750076452220794070, 8.355341703671758276282817715156, 9.200686159916403648839369721504