Properties

Label 2-1456-1.1-c1-0-1
Degree $2$
Conductor $1456$
Sign $1$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.19·3-s − 1.70·5-s + 7-s + 1.81·9-s − 4.56·11-s − 13-s + 3.74·15-s + 7.37·17-s − 6.46·19-s − 2.19·21-s − 5.90·23-s − 2.08·25-s + 2.59·27-s + 2.69·29-s − 0.523·31-s + 10.0·33-s − 1.70·35-s + 2.17·37-s + 2.19·39-s − 4.98·41-s − 2.32·43-s − 3.10·45-s + 12.3·47-s + 49-s − 16.1·51-s − 4.71·53-s + 7.78·55-s + ⋯
L(s)  = 1  − 1.26·3-s − 0.763·5-s + 0.377·7-s + 0.605·9-s − 1.37·11-s − 0.277·13-s + 0.967·15-s + 1.78·17-s − 1.48·19-s − 0.478·21-s − 1.23·23-s − 0.417·25-s + 0.500·27-s + 0.500·29-s − 0.0939·31-s + 1.74·33-s − 0.288·35-s + 0.357·37-s + 0.351·39-s − 0.778·41-s − 0.355·43-s − 0.462·45-s + 1.79·47-s + 0.142·49-s − 2.26·51-s − 0.648·53-s + 1.05·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5826238275\)
\(L(\frac12)\) \(\approx\) \(0.5826238275\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + 2.19T + 3T^{2} \)
5 \( 1 + 1.70T + 5T^{2} \)
11 \( 1 + 4.56T + 11T^{2} \)
17 \( 1 - 7.37T + 17T^{2} \)
19 \( 1 + 6.46T + 19T^{2} \)
23 \( 1 + 5.90T + 23T^{2} \)
29 \( 1 - 2.69T + 29T^{2} \)
31 \( 1 + 0.523T + 31T^{2} \)
37 \( 1 - 2.17T + 37T^{2} \)
41 \( 1 + 4.98T + 41T^{2} \)
43 \( 1 + 2.32T + 43T^{2} \)
47 \( 1 - 12.3T + 47T^{2} \)
53 \( 1 + 4.71T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 + 0.137T + 61T^{2} \)
67 \( 1 - 7.96T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 - 2.52T + 73T^{2} \)
79 \( 1 + 4.85T + 79T^{2} \)
83 \( 1 - 7.51T + 83T^{2} \)
89 \( 1 + 10.8T + 89T^{2} \)
97 \( 1 - 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.905825045000487672407454853295, −8.348459132699610656178341678768, −7.981093066797541115918917676045, −7.10417507988091395850649500491, −6.02817598516318060766268215897, −5.42465997235892209931953524534, −4.64882441792769940626794384977, −3.65529121232184421737818126557, −2.27542611612669956223882072746, −0.55919019417946872945679965196, 0.55919019417946872945679965196, 2.27542611612669956223882072746, 3.65529121232184421737818126557, 4.64882441792769940626794384977, 5.42465997235892209931953524534, 6.02817598516318060766268215897, 7.10417507988091395850649500491, 7.981093066797541115918917676045, 8.348459132699610656178341678768, 9.905825045000487672407454853295

Graph of the $Z$-function along the critical line