L(s) = 1 | + (−0.309 + 0.951i)3-s + (−2.30 + 1.67i)5-s + (−1.30 − 4.02i)7-s + (−0.809 − 0.587i)9-s + (−1.42 − 1.03i)13-s + (−0.881 − 2.71i)15-s + (3.73 − 2.71i)17-s + (−1.88 + 5.79i)19-s + 4.23·21-s + 4.23·23-s + (0.972 − 2.99i)25-s + (0.809 − 0.587i)27-s + (1.38 + 4.25i)29-s + (6.97 + 5.06i)31-s + (9.78 + 7.10i)35-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.549i)3-s + (−1.03 + 0.750i)5-s + (−0.494 − 1.52i)7-s + (−0.269 − 0.195i)9-s + (−0.395 − 0.287i)13-s + (−0.227 − 0.700i)15-s + (0.906 − 0.658i)17-s + (−0.431 + 1.32i)19-s + 0.924·21-s + 0.883·23-s + (0.194 − 0.598i)25-s + (0.155 − 0.113i)27-s + (0.256 + 0.789i)29-s + (1.25 + 0.909i)31-s + (1.65 + 1.20i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.026001368\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.026001368\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (2.30 - 1.67i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (1.30 + 4.02i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.42 + 1.03i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.73 + 2.71i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.88 - 5.79i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.23T + 23T^{2} \) |
| 29 | \( 1 + (-1.38 - 4.25i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-6.97 - 5.06i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.54 + 7.83i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.163 - 0.502i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 0.527T + 43T^{2} \) |
| 47 | \( 1 + (-0.427 + 1.31i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-10.9 - 7.97i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.73 - 8.42i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.224i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 6.85T + 67T^{2} \) |
| 71 | \( 1 + (-2.92 + 2.12i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.381 - 1.17i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.89 - 5.73i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-5.28 + 3.83i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (4.92 + 3.57i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.961722698051705107554708857412, −8.849262813681695432186508489994, −7.76011891015995818102922287126, −7.29475766572205055263331669229, −6.59111010289174176298953117800, −5.39153649692368389159308569067, −4.33426423396462684453909511639, −3.62717983498742547942509761642, −2.99967479143601670779681346381, −0.849917056081675362121312011469,
0.61644949194073565150752875739, 2.22719406730250593612383590840, 3.18161751494073813738009851123, 4.48004347760732936880125161961, 5.23038417203911084280758451784, 6.17042326380821752447031026226, 6.93052664226883338009603833378, 8.036693203450819884871617767707, 8.473060060565275133297339175162, 9.210525784426922043898146515122