L(s) = 1 | + (−0.309 + 0.951i)3-s + (−0.535 − 1.64i)7-s + (−0.809 − 0.587i)9-s + (0.535 − 1.64i)19-s + 1.73·21-s + 6·23-s + (−1.54 + 4.75i)25-s + (0.809 − 0.587i)27-s + (−3.21 − 9.88i)29-s + (−5.66 − 4.11i)31-s + (0.309 + 0.951i)37-s + (3.21 − 9.88i)41-s + 10.3·43-s + (1.85 − 5.70i)47-s + (3.23 − 2.35i)49-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.549i)3-s + (−0.202 − 0.622i)7-s + (−0.269 − 0.195i)9-s + (0.122 − 0.377i)19-s + 0.377·21-s + 1.25·23-s + (−0.309 + 0.951i)25-s + (0.155 − 0.113i)27-s + (−0.596 − 1.83i)29-s + (−1.01 − 0.738i)31-s + (0.0508 + 0.156i)37-s + (0.501 − 1.54i)41-s + 1.58·43-s + (0.270 − 0.832i)47-s + (0.462 − 0.335i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.694 + 0.719i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.694 + 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.299297676\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.299297676\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.535 + 1.64i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.535 + 1.64i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (3.21 + 9.88i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (5.66 + 4.11i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.21 + 9.88i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 10.3T + 43T^{2} \) |
| 47 | \( 1 + (-1.85 + 5.70i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.85 + 3.52i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.85 - 5.70i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.40 + 1.01i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 7T + 67T^{2} \) |
| 71 | \( 1 + (9.70 - 7.05i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.67 + 8.23i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.00 - 5.09i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.40 + 6.10i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 12T + 89T^{2} \) |
| 97 | \( 1 + (4.04 + 2.93i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.404997545674980159311480951183, −8.875293399945352661936260538644, −7.63090784801126439490566895988, −7.13761461541437365682519864466, −5.99381658584327824801999791451, −5.28197891708800436049915697736, −4.20817823290013776659812323235, −3.55811151715475606413486027289, −2.28283701112754704678038685644, −0.59329537062797875306891548451,
1.22269324369905584966792798885, 2.47417192454424357717014624984, 3.42427052287767787374414278639, 4.73682197204568537412384810646, 5.58918328995629967389721607620, 6.34728081378575296076847564911, 7.20441271553934955887404165523, 7.931380371216043386166974223182, 8.946721544243090110427337426804, 9.359191851867527292480076889898