L(s) = 1 | + (0.309 + 0.951i)3-s + (−2.42 − 1.76i)5-s + (−0.618 + 1.90i)7-s + (−0.809 + 0.587i)9-s + (4.04 − 2.93i)13-s + (0.927 − 2.85i)15-s + (−2.42 − 1.76i)17-s + (1.23 + 3.80i)19-s − 1.99·21-s + 6·23-s + (1.23 + 3.80i)25-s + (−0.809 − 0.587i)27-s + (2.78 − 8.55i)29-s + (−6.47 + 4.70i)31-s + (4.85 − 3.52i)35-s + ⋯ |
L(s) = 1 | + (0.178 + 0.549i)3-s + (−1.08 − 0.788i)5-s + (−0.233 + 0.718i)7-s + (−0.269 + 0.195i)9-s + (1.12 − 0.815i)13-s + (0.239 − 0.736i)15-s + (−0.588 − 0.427i)17-s + (0.283 + 0.872i)19-s − 0.436·21-s + 1.25·23-s + (0.247 + 0.760i)25-s + (−0.155 − 0.113i)27-s + (0.516 − 1.58i)29-s + (−1.16 + 0.844i)31-s + (0.820 − 0.596i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.382336511\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.382336511\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (2.42 + 1.76i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.618 - 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.04 + 2.93i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.42 + 1.76i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.23 - 3.80i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (-2.78 + 8.55i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.47 - 4.70i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.16 - 6.65i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.927 - 2.85i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + (-3.70 - 11.4i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.28 + 5.29i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 - 5.70i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-11.3 - 8.22i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 + (-4.85 - 3.52i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.09 + 9.51i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.47 + 4.70i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.357205213118542504105166600308, −8.751911374919635387495354960786, −8.206259915157251589407213361142, −7.39781651019100193865909353382, −6.12956358569672344448094232947, −5.35949056513269011364636127314, −4.43827703278067998480858643630, −3.65110855983992281587761075043, −2.71416032933528340367741637675, −0.925138583538617499636401331588,
0.77247864324304186452758042559, 2.31368331292170652345724285183, 3.60854967774636563514110593867, 3.92865717907406765128193357065, 5.32324097444527499570591065336, 6.64859182150183993533122577816, 7.00121142370598595417228173046, 7.59643924515528238659884926248, 8.728961724604837475648112079803, 9.129523265142507617641328049412