L(s) = 1 | + (−0.309 − 0.951i)3-s + (3.11 + 2.26i)5-s + (0.0729 − 0.224i)7-s + (−0.809 + 0.587i)9-s + (−5.04 + 3.66i)13-s + (1.19 − 3.66i)15-s + (1.92 + 1.40i)17-s + (1.57 + 4.84i)19-s − 0.236·21-s − 0.236·23-s + (3.04 + 9.37i)25-s + (0.809 + 0.587i)27-s + (−1.38 + 4.25i)29-s + (5.16 − 3.75i)31-s + (0.736 − 0.534i)35-s + ⋯ |
L(s) = 1 | + (−0.178 − 0.549i)3-s + (1.39 + 1.01i)5-s + (0.0275 − 0.0848i)7-s + (−0.269 + 0.195i)9-s + (−1.39 + 1.01i)13-s + (0.307 − 0.946i)15-s + (0.467 + 0.339i)17-s + (0.360 + 1.11i)19-s − 0.0515·21-s − 0.0492·23-s + (0.609 + 1.87i)25-s + (0.155 + 0.113i)27-s + (−0.256 + 0.789i)29-s + (0.927 − 0.673i)31-s + (0.124 − 0.0903i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.746046335\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.746046335\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-3.11 - 2.26i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.0729 + 0.224i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (5.04 - 3.66i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.92 - 1.40i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.57 - 4.84i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 0.236T + 23T^{2} \) |
| 29 | \( 1 + (1.38 - 4.25i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.16 + 3.75i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.16 - 3.57i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.92 + 9.00i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 9.47T + 43T^{2} \) |
| 47 | \( 1 + (-1.11 - 3.44i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (5.30 - 3.85i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.663 + 2.04i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (2.11 + 1.53i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 0.145T + 67T^{2} \) |
| 71 | \( 1 + (-1.11 - 0.812i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1 - 3.07i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-11.5 + 8.36i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.5 - 9.09i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (-4.11 + 2.99i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.868580927501903139166469285916, −9.041503993109171250938765754953, −7.83783935862698822037031377734, −7.09839736957185946215304911393, −6.44643350773625401568692874658, −5.73972268359706242541728341771, −4.85866180226035427214763168660, −3.40306754220291951483772258890, −2.34037600454252651588676793679, −1.62212526928790415490732355555,
0.69679904787164105524855456559, 2.16660782672772049825811370098, 3.13085039811564968384417726081, 4.79154597316741634561137024958, 5.03895493278672741563355270552, 5.82271407329673163728106334565, 6.80269120575895825346546879184, 7.928195321551980937520598824417, 8.759355119826319804518172888598, 9.659664171699418818740390774607