L(s) = 1 | + (−0.309 − 0.951i)3-s + (−1.61 − 1.17i)5-s + (−0.618 + 1.90i)7-s + (−0.809 + 0.587i)9-s + (4.85 − 3.52i)13-s + (−0.618 + 1.90i)15-s + (−3.23 − 2.35i)17-s + (0.618 + 1.90i)19-s + 1.99·21-s − 8·23-s + (−0.309 − 0.951i)25-s + (0.809 + 0.587i)27-s + (3.23 − 2.35i)35-s + (−1.85 + 5.70i)37-s + (−4.85 − 3.52i)39-s + ⋯ |
L(s) = 1 | + (−0.178 − 0.549i)3-s + (−0.723 − 0.525i)5-s + (−0.233 + 0.718i)7-s + (−0.269 + 0.195i)9-s + (1.34 − 0.978i)13-s + (−0.159 + 0.491i)15-s + (−0.784 − 0.570i)17-s + (0.141 + 0.436i)19-s + 0.436·21-s − 1.66·23-s + (−0.0618 − 0.190i)25-s + (0.155 + 0.113i)27-s + (0.546 − 0.397i)35-s + (−0.304 + 0.938i)37-s + (−0.777 − 0.564i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.834 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.06662637079\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06662637079\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (1.61 + 1.17i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.618 - 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.85 + 3.52i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.23 + 2.35i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.618 - 1.90i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.85 - 5.70i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 10T + 43T^{2} \) |
| 47 | \( 1 + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (11.3 - 8.22i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (3.70 - 11.4i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (11.3 + 8.22i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.85 - 5.70i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.61 + 1.17i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.9 - 9.40i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 + (-1.61 + 1.17i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.771490015997783520558472726206, −8.244273452418885433429665835278, −7.65265625299180822568844604231, −6.39613506957927144785057626322, −5.91936527365518944800675490060, −4.88582864493712095474751615180, −3.84869435931799853250734361138, −2.82687517947176178896265976086, −1.47692177525037913695599699821, −0.02742191199574877987703514672,
1.83241444872562866534214653331, 3.50628361182230876993752462292, 3.86317278757586093838790983888, 4.75956753699569729149043202311, 6.12812579665279411027329284776, 6.62866924948525863915951286455, 7.58529699192288290618175732433, 8.427404083066443195442390907462, 9.207313571232388860358871031646, 10.10600506873494688183796243275