Properties

Label 2-1452-1.1-c3-0-0
Degree $2$
Conductor $1452$
Sign $1$
Analytic cond. $85.6707$
Root an. cond. $9.25585$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 14.2·5-s − 1.25·7-s + 9·9-s + 7.74·13-s + 42.7·15-s − 99.8·17-s − 34.2·19-s + 3.77·21-s − 79.5·23-s + 78.2·25-s − 27·27-s + 234.·29-s − 201.·31-s + 17.9·35-s − 358.·37-s − 23.2·39-s − 20.3·41-s + 73.1·43-s − 128.·45-s + 121.·47-s − 341.·49-s + 299.·51-s − 63.7·53-s + 102.·57-s − 10.2·59-s − 713.·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.27·5-s − 0.0679·7-s + 0.333·9-s + 0.165·13-s + 0.736·15-s − 1.42·17-s − 0.414·19-s + 0.0392·21-s − 0.721·23-s + 0.626·25-s − 0.192·27-s + 1.50·29-s − 1.16·31-s + 0.0866·35-s − 1.59·37-s − 0.0953·39-s − 0.0776·41-s + 0.259·43-s − 0.425·45-s + 0.377·47-s − 0.995·49-s + 0.822·51-s − 0.165·53-s + 0.239·57-s − 0.0226·59-s − 1.49·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1452\)    =    \(2^{2} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(85.6707\)
Root analytic conductor: \(9.25585\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1452,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4865361616\)
\(L(\frac12)\) \(\approx\) \(0.4865361616\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
11 \( 1 \)
good5 \( 1 + 14.2T + 125T^{2} \)
7 \( 1 + 1.25T + 343T^{2} \)
13 \( 1 - 7.74T + 2.19e3T^{2} \)
17 \( 1 + 99.8T + 4.91e3T^{2} \)
19 \( 1 + 34.2T + 6.85e3T^{2} \)
23 \( 1 + 79.5T + 1.21e4T^{2} \)
29 \( 1 - 234.T + 2.43e4T^{2} \)
31 \( 1 + 201.T + 2.97e4T^{2} \)
37 \( 1 + 358.T + 5.06e4T^{2} \)
41 \( 1 + 20.3T + 6.89e4T^{2} \)
43 \( 1 - 73.1T + 7.95e4T^{2} \)
47 \( 1 - 121.T + 1.03e5T^{2} \)
53 \( 1 + 63.7T + 1.48e5T^{2} \)
59 \( 1 + 10.2T + 2.05e5T^{2} \)
61 \( 1 + 713.T + 2.26e5T^{2} \)
67 \( 1 + 288.T + 3.00e5T^{2} \)
71 \( 1 - 149.T + 3.57e5T^{2} \)
73 \( 1 + 67.3T + 3.89e5T^{2} \)
79 \( 1 + 935.T + 4.93e5T^{2} \)
83 \( 1 + 595.T + 5.71e5T^{2} \)
89 \( 1 - 136.T + 7.04e5T^{2} \)
97 \( 1 - 1.37e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.957957131194063514859345800319, −8.380831343499151871179909472978, −7.46056607734257448058223363076, −6.77207739296960612917859022188, −5.95482767728941621202500953019, −4.75913429627479399598441273001, −4.19398975712858016168151167387, −3.23175376993793645650278566427, −1.83882713802134881045869920740, −0.34393335954407428406530499962, 0.34393335954407428406530499962, 1.83882713802134881045869920740, 3.23175376993793645650278566427, 4.19398975712858016168151167387, 4.75913429627479399598441273001, 5.95482767728941621202500953019, 6.77207739296960612917859022188, 7.46056607734257448058223363076, 8.380831343499151871179909472978, 8.957957131194063514859345800319

Graph of the $Z$-function along the critical line