L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 2i·7-s + i·8-s + 2·9-s − 3·11-s + i·12-s − i·13-s + 2·14-s + 16-s − 8i·17-s − 2i·18-s + 2·21-s + 3i·22-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 0.755i·7-s + 0.353i·8-s + 0.666·9-s − 0.904·11-s + 0.288i·12-s − 0.277i·13-s + 0.534·14-s + 0.250·16-s − 1.94i·17-s − 0.471i·18-s + 0.436·21-s + 0.639i·22-s + ⋯ |
Λ(s)=(=(1450s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(1450s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1450
= 2⋅52⋅29
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
11.5783 |
Root analytic conductor: |
3.40269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1450(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1450, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.222811854 |
L(21) |
≈ |
1.222811854 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 29 | 1−T |
good | 3 | 1+iT−3T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+3T+11T2 |
| 13 | 1+iT−13T2 |
| 17 | 1+8iT−17T2 |
| 19 | 1+19T2 |
| 23 | 1−4iT−23T2 |
| 31 | 1+3T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+11iT−43T2 |
| 47 | 1+13iT−47T2 |
| 53 | 1+11iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1−2T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+15T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.282708863658135757727897311368, −8.487515671598840071247803635051, −7.48402816835388469244948131603, −7.01138723621797215961796653114, −5.56138675528115967421074827793, −5.14278588832138914268892894165, −3.86934664072090993796106148388, −2.72117007321105440843291562410, −1.99883379181252830533277575355, −0.50934430537415501617057669376,
1.43337419471930793188795317925, 3.13815152938881594795222410751, 4.31172238911361323212801375920, 4.58615571580410205780919613967, 5.87624576083343006235451222415, 6.55377279749605764139928304380, 7.57394862267748566163786555293, 8.074362155823193822037270074564, 9.041531891321149447817572604306, 9.885830763888100270512883690511