L(s) = 1 | + 5·5-s − 30·7-s + 50·11-s − 88·13-s − 74·17-s − 140·19-s + 80·23-s + 25·25-s + 234·29-s − 150·35-s + 116·37-s + 72·41-s − 280·43-s + 120·47-s + 557·49-s + 498·53-s + 250·55-s − 870·59-s + 650·61-s − 440·65-s − 420·67-s + 1.02e3·71-s − 322·73-s − 1.50e3·77-s − 160·79-s − 980·83-s − 370·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.61·7-s + 1.37·11-s − 1.87·13-s − 1.05·17-s − 1.69·19-s + 0.725·23-s + 1/5·25-s + 1.49·29-s − 0.724·35-s + 0.515·37-s + 0.274·41-s − 0.993·43-s + 0.372·47-s + 1.62·49-s + 1.29·53-s + 0.612·55-s − 1.91·59-s + 1.36·61-s − 0.839·65-s − 0.765·67-s + 1.70·71-s − 0.516·73-s − 2.22·77-s − 0.227·79-s − 1.29·83-s − 0.472·85-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.269597898 |
L(21) |
≈ |
1.269597898 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−pT |
good | 7 | 1+30T+p3T2 |
| 11 | 1−50T+p3T2 |
| 13 | 1+88T+p3T2 |
| 17 | 1+74T+p3T2 |
| 19 | 1+140T+p3T2 |
| 23 | 1−80T+p3T2 |
| 29 | 1−234T+p3T2 |
| 31 | 1+p3T2 |
| 37 | 1−116T+p3T2 |
| 41 | 1−72T+p3T2 |
| 43 | 1+280T+p3T2 |
| 47 | 1−120T+p3T2 |
| 53 | 1−498T+p3T2 |
| 59 | 1+870T+p3T2 |
| 61 | 1−650T+p3T2 |
| 67 | 1+420T+p3T2 |
| 71 | 1−1020T+p3T2 |
| 73 | 1+322T+p3T2 |
| 79 | 1+160T+p3T2 |
| 83 | 1+980T+p3T2 |
| 89 | 1−1124T+p3T2 |
| 97 | 1−1114T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.170770449175621346641164037392, −8.698067835935893108881640921367, −7.25145577137105647403766833281, −6.56085985836188356127498568580, −6.25861228117705552377472002338, −4.86388977716025109580838227857, −4.09493565939268740159186022999, −2.91591103789219758503069008077, −2.14227206263947767241181183518, −0.52728645845441789911851267592,
0.52728645845441789911851267592, 2.14227206263947767241181183518, 2.91591103789219758503069008077, 4.09493565939268740159186022999, 4.86388977716025109580838227857, 6.25861228117705552377472002338, 6.56085985836188356127498568580, 7.25145577137105647403766833281, 8.698067835935893108881640921367, 9.170770449175621346641164037392